Logical Structures for Representation of Knowledge and Uncertainty

Logical Structures for Representation of Knowledge and Uncertainty PDF Author: Ellen Hisdal
Publisher: Physica
ISBN: 3790818879
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
It is the business of science not to create laws, but to discover them. We do not originate the constitution of our own minds, greatly as it may be in our power to modify their character. And as the laws of the human intellect do not depend upon our will, so the forms of science, of (1. 1) which they constitute the basis, are in all essential regards independent of individual choice. George Boole [10, p. llJ 1. 1 Comparison with Traditional Logic The logic of this book is a probability logic built on top of a yes-no or 2-valued logic. It is divided into two parts, part I: BP Logic, and part II: M Logic. 'BP' stands for 'Bayes Postulate'. This postulate says that in the absence of knowl edge concerning a probability distribution over a universe or space one should assume 1 a uniform distribution. 2 The M logic of part II does not make use of Bayes postulate or of any other postulates or axioms. It relies exclusively on purely deductive reasoning following from the definition of probabilities. The M logic goes an important step further than the BP logic in that it can distinguish between certain types of information supply sentences which have the same representation in the BP logic as well as in traditional first order logic, although they clearly have different meanings (see example 6. 1. 2; also comments to the Paris-Rome problem of eqs. (1. 8), (1. 9) below).

Logical Structures for Representation of Knowledge and Uncertainty

Logical Structures for Representation of Knowledge and Uncertainty PDF Author: Ellen Hisdal
Publisher: Physica
ISBN: 3790818879
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
It is the business of science not to create laws, but to discover them. We do not originate the constitution of our own minds, greatly as it may be in our power to modify their character. And as the laws of the human intellect do not depend upon our will, so the forms of science, of (1. 1) which they constitute the basis, are in all essential regards independent of individual choice. George Boole [10, p. llJ 1. 1 Comparison with Traditional Logic The logic of this book is a probability logic built on top of a yes-no or 2-valued logic. It is divided into two parts, part I: BP Logic, and part II: M Logic. 'BP' stands for 'Bayes Postulate'. This postulate says that in the absence of knowl edge concerning a probability distribution over a universe or space one should assume 1 a uniform distribution. 2 The M logic of part II does not make use of Bayes postulate or of any other postulates or axioms. It relies exclusively on purely deductive reasoning following from the definition of probabilities. The M logic goes an important step further than the BP logic in that it can distinguish between certain types of information supply sentences which have the same representation in the BP logic as well as in traditional first order logic, although they clearly have different meanings (see example 6. 1. 2; also comments to the Paris-Rome problem of eqs. (1. 8), (1. 9) below).

Knowledge Representation

Knowledge Representation PDF Author: John F. Sowa
Publisher:
ISBN: 9787111121497
Category : Knowledge representation (Information theory)
Languages : en
Pages : 594

Get Book Here

Book Description


Knowledge Processing and Decision Making in Agent-Based Systems

Knowledge Processing and Decision Making in Agent-Based Systems PDF Author: Lakhmi C Jain
Publisher: Springer Science & Business Media
ISBN: 3540880488
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
Knowledge processing and decision making in agent-based systems constitute the key components of intelligent machines. The contributions included in the book are: Innovations in Knowledge Processing and Decision Making in Agent-Based Systems Towards Real-World HTN Planning Agents Mobile Agent-Based System for Distributed Software Maintenance Software Agents in New Generation Networks: Towards the Automation of Telecom Processes Multi-agent Systems and Paraconsistent Knowledge An Agent-based Negotiation Platform for Collaborative Decision-Making in Construction Supply Chain An Event-Driven Algorithm for Agents at the Web A Generic Mobile Agent Framework Toward Ambient Intelligence Developing Actionable Trading Strategies Agent Uncertainty Model and Quantum Mechanics Representation Agent Transportation Layer Adaptation System Software Agents to Enable Service Composition through Negotiation Advanced Technology Towards Developing Decentralized Autonomous Flexible Manufacturing Systems

Agent and Multi-Agent Systems: Technologies and Applications

Agent and Multi-Agent Systems: Technologies and Applications PDF Author: Ngoc Thanh Nguyen
Publisher: Springer Science & Business Media
ISBN: 3540728295
Category : Computers
Languages : en
Pages : 1065

Get Book Here

Book Description
This book constitutes the refereed proceedings of the First International Symposium on Agent and Multi-Agent Systems: Technologies and Applications, KES-AMSTA 2007, held in Wroclaw, Poland in May/June 2007. Coverage includes agent-oriented Web applications, mobility aspects of agent systems, agents for network management, agent approaches to robotic systems, as well as intelligent and secure agents for digital content management.

Reasoning About Knowledge

Reasoning About Knowledge PDF Author: Ronald Fagin
Publisher: MIT Press
ISBN: 9780262562003
Category : Business & Economics
Languages : en
Pages : 576

Get Book Here

Book Description
Reasoning about knowledge—particularly the knowledge of agents who reason about the world and each other's knowledge—was once the exclusive province of philosophers and puzzle solvers. More recently, this type of reasoning has been shown to play a key role in a surprising number of contexts, from understanding conversations to the analysis of distributed computer algorithms. Reasoning About Knowledge is the first book to provide a general discussion of approaches to reasoning about knowledge and its applications to distributed systems, artificial intelligence, and game theory. It brings eight years of work by the authors into a cohesive framework for understanding and analyzing reasoning about knowledge that is intuitive, mathematically well founded, useful in practice, and widely applicable. The book is almost completely self-contained and should be accessible to readers in a variety of disciplines, including computer science, artificial intelligence, linguistics, philosophy, cognitive science, and game theory. Each chapter includes exercises and bibliographic notes.

Logical Structures for Representation of Knowledge and Uncertainty

Logical Structures for Representation of Knowledge and Uncertainty PDF Author: Ellen Hisdal
Publisher:
ISBN: 9783662123881
Category :
Languages : en
Pages : 128

Get Book Here

Book Description


Geometry of Knowledge for Intelligent Systems

Geometry of Knowledge for Intelligent Systems PDF Author: Germano Resconi
Publisher: Springer
ISBN: 3642279724
Category : Technology & Engineering
Languages : en
Pages : 284

Get Book Here

Book Description
The book is on the geometry of agent knowledge. The important concept studied in this book is the Field and its Geometric Representation. To develop a geometric image of the gravity , Einstein used Tensor Calculus but this is very different from the knowledge instruments used now, as for instance techniques of data mining , neural networks , formal concept analysis ,quantum computer and other topics. The aim of this book is to rebuild the tensor calculus in order to give a geometric representation of agent knowledge. By using a new geometry of knowledge we can unify all the topics that have been studied in recent years to create a bridge between the geometric representation of the physical phenomena and the geometric representation of the individual and subjective knowledge of the agents.

Preferences and Decisions under Incomplete Knowledge

Preferences and Decisions under Incomplete Knowledge PDF Author: Janos Fodor
Publisher: Physica
ISBN: 3790818488
Category : Business & Economics
Languages : en
Pages : 215

Get Book Here

Book Description
Nowadays, decision problems are pervaded with incomplete knowledge, i.e., imprecision and/or uncertain information, both in the problem description and in the preferential information. In this volume leading scientists in the field address various theoretical and practical aspects related to the handling of this incompleteness. The problems discussed are taken from multi-objective linear programming, rationality considerations in preference modelling, non-probabilistic utility theory, data fusion, group decision making and multicriteria decision aid. The book is oriented towards researchers, graduate and postgraduate students in decision analysis, fuzzy sets and fuzzy logic, and operations research/management science.

Uncertainty Theory

Uncertainty Theory PDF Author: Baoding Liu
Publisher: Springer Science & Business Media
ISBN: 3642139582
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms. Uncertainty is any concept that satisfies the axioms of uncertainty theory. Thus uncertainty is neither randomness nor fuzziness. It is also known from some surveys that a lot of phenomena do behave like uncertainty. How do we model uncertainty? How do we use uncertainty theory? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory, including uncertain programming, uncertain risk analysis, uncertain reliability analysis, uncertain process, uncertain calculus, uncertain differential equation, uncertain logic, uncertain entailment, and uncertain inference. Mathematicians, researchers, engineers, designers, and students in the field of mathematics, information science, operations research, system science, industrial engineering, computer science, artificial intelligence, finance, control, and management science will find this work a stimulating and useful reference.

Fuzzy Logic Techniques for Autonomous Vehicle Navigation

Fuzzy Logic Techniques for Autonomous Vehicle Navigation PDF Author: Dimiter Driankov
Publisher: Physica
ISBN: 3790818356
Category : Technology & Engineering
Languages : en
Pages : 388

Get Book Here

Book Description
In the past decade a critical mass of work that uses fuzzy logic for autonomous vehicle navigation has been reported. Unfortunately, reports of this work are scattered among conference, workshop, and journal publications that belong to different research communities (fuzzy logic, robotics, artificial intelligence, intelligent control) and it is therefore not easily accessible either to the new comer or to the specialist. As a result, researchers in this area may end up reinventing things while being unaware of important existing work. We believe that research and applications based on fuzzy logic in the field of autonomous vehicle navigation have now reached a sufficient level of maturity, and that it should be suitably reported to the largest possible group of interested practitioners, researches, and students. On these grounds, we have endeavored to collect some of the most representative pieces of work in one volume to be used as a reference. Our aim was to provide a volume which is more than "yet another random collection of papers," and gives the reader some added value with respect to the individual papers. In order to achieve this goal we have aimed at: • Selecting contributions which are representative of a wide range of prob lems and solutions and which have been validated on real robots; and • Setting the individual contributions in a clear framework, that identifies the main problems of autonomous robotics for which solutions based on fuzzy logic have been proposed.