Author: Paul Halmos
Publisher: American Mathematical Soc.
ISBN: 1470451662
Category : Mathematics
Languages : en
Pages : 153
Book Description
Here is an introduction to modern logic that differs from others by treating logic from an algebraic perspective. What this means is that notions and results from logic become much easier to understand when seen from a familiar standpoint of algebra. The presentation, written in the engaging and provocative style that is the hallmark of Paul Halmos, from whose course the book is taken, is aimed at a broad audience, students, teachers and amateurs in mathematics, philosophy, computer science, linguistics and engineering; they all have to get to grips with logic at some stage. All that is needed.
Logic as Algebra
Author: Paul Halmos
Publisher: American Mathematical Soc.
ISBN: 1470451662
Category : Mathematics
Languages : en
Pages : 153
Book Description
Here is an introduction to modern logic that differs from others by treating logic from an algebraic perspective. What this means is that notions and results from logic become much easier to understand when seen from a familiar standpoint of algebra. The presentation, written in the engaging and provocative style that is the hallmark of Paul Halmos, from whose course the book is taken, is aimed at a broad audience, students, teachers and amateurs in mathematics, philosophy, computer science, linguistics and engineering; they all have to get to grips with logic at some stage. All that is needed.
Publisher: American Mathematical Soc.
ISBN: 1470451662
Category : Mathematics
Languages : en
Pages : 153
Book Description
Here is an introduction to modern logic that differs from others by treating logic from an algebraic perspective. What this means is that notions and results from logic become much easier to understand when seen from a familiar standpoint of algebra. The presentation, written in the engaging and provocative style that is the hallmark of Paul Halmos, from whose course the book is taken, is aimed at a broad audience, students, teachers and amateurs in mathematics, philosophy, computer science, linguistics and engineering; they all have to get to grips with logic at some stage. All that is needed.
Logic and Algebra
Author: Aldo Ursini
Publisher: Routledge
ISBN: 1351434721
Category : Mathematics
Languages : en
Pages : 728
Book Description
""Attempts to unite the fields of mathematical logic and general algebra. Presents a collection of refereed papers inspired by the International Conference on Logic and Algebra held in Siena, Italy, in honor of the late Italian mathematician Roberto Magari, a leading force in the blossoming of research in mathematical logic in Italy since the 1960s.
Publisher: Routledge
ISBN: 1351434721
Category : Mathematics
Languages : en
Pages : 728
Book Description
""Attempts to unite the fields of mathematical logic and general algebra. Presents a collection of refereed papers inspired by the International Conference on Logic and Algebra held in Siena, Italy, in honor of the late Italian mathematician Roberto Magari, a leading force in the blossoming of research in mathematical logic in Italy since the 1960s.
An Algebraic Introduction to Mathematical Logic
Author: D.W. Barnes
Publisher: Springer Science & Business Media
ISBN: 1475744897
Category : Mathematics
Languages : en
Pages : 129
Book Description
This book is intended for mathematicians. Its origins lie in a course of lectures given by an algebraist to a class which had just completed a substantial course on abstract algebra. Consequently, our treatment of the subject is algebraic. Although we assume a reasonable level of sophistication in algebra, the text requires little more than the basic notions of group, ring, module, etc. A more detailed knowledge of algebra is required for some of the exercises. We also assume a familiarity with the main ideas of set theory, including cardinal numbers and Zorn's Lemma. In this book, we carry out a mathematical study of the logic used in mathematics. We do this by constructing a mathematical model of logic and applying mathematics to analyse the properties of the model. We therefore regard all our existing knowledge of mathematics as being applicable to the analysis of the model, and in particular we accept set theory as part of the meta-Ianguage. We are not attempting to construct a foundation on which all mathematics is to be based--rather, any conclusions to be drawn about the foundations of mathematics come only by analogy with the model, and are to be regarded in much the same way as the conclusions drawn from any scientific theory.
Publisher: Springer Science & Business Media
ISBN: 1475744897
Category : Mathematics
Languages : en
Pages : 129
Book Description
This book is intended for mathematicians. Its origins lie in a course of lectures given by an algebraist to a class which had just completed a substantial course on abstract algebra. Consequently, our treatment of the subject is algebraic. Although we assume a reasonable level of sophistication in algebra, the text requires little more than the basic notions of group, ring, module, etc. A more detailed knowledge of algebra is required for some of the exercises. We also assume a familiarity with the main ideas of set theory, including cardinal numbers and Zorn's Lemma. In this book, we carry out a mathematical study of the logic used in mathematics. We do this by constructing a mathematical model of logic and applying mathematics to analyse the properties of the model. We therefore regard all our existing knowledge of mathematics as being applicable to the analysis of the model, and in particular we accept set theory as part of the meta-Ianguage. We are not attempting to construct a foundation on which all mathematics is to be based--rather, any conclusions to be drawn about the foundations of mathematics come only by analogy with the model, and are to be regarded in much the same way as the conclusions drawn from any scientific theory.
Logic as Algebra
Author: Paul Halmos
Publisher: Cambridge University Press
ISBN: 9780883853276
Category : Mathematics
Languages : en
Pages : 156
Book Description
An introduction to logic from the perspective of algebra.
Publisher: Cambridge University Press
ISBN: 9780883853276
Category : Mathematics
Languages : en
Pages : 156
Book Description
An introduction to logic from the perspective of algebra.
Logic and Boolean Algebra
Author: Bradford Henry Arnold
Publisher: Courier Corporation
ISBN: 0486483851
Category : Mathematics
Languages : en
Pages : 163
Book Description
Orignally published: Englewood Cliffs, N.J.: Prentice-Hall, 1962.
Publisher: Courier Corporation
ISBN: 0486483851
Category : Mathematics
Languages : en
Pages : 163
Book Description
Orignally published: Englewood Cliffs, N.J.: Prentice-Hall, 1962.
Algebraic Logic
Author: Paul R. Halmos
Publisher: Courier Dover Publications
ISBN: 0486810410
Category : Mathematics
Languages : en
Pages : 276
Book Description
Beginning with an introduction to the concepts of algebraic logic, this concise volume features ten articles by a prominent mathematician that originally appeared in journals from 1954 to 1959. Covering monadic and polyadic algebras, these articles are essentially self-contained and accessible to a general mathematical audience, requiring no specialized knowledge of algebra or logic. Part One addresses monadic algebras, with articles on general theory, representation, and freedom. Part Two explores polyadic algebras, progressing from general theory and terms to equality. Part Three offers three items on polyadic Boolean algebras, including a survey of predicates, terms, operations, and equality. The book concludes with an additional bibliography and index.
Publisher: Courier Dover Publications
ISBN: 0486810410
Category : Mathematics
Languages : en
Pages : 276
Book Description
Beginning with an introduction to the concepts of algebraic logic, this concise volume features ten articles by a prominent mathematician that originally appeared in journals from 1954 to 1959. Covering monadic and polyadic algebras, these articles are essentially self-contained and accessible to a general mathematical audience, requiring no specialized knowledge of algebra or logic. Part One addresses monadic algebras, with articles on general theory, representation, and freedom. Part Two explores polyadic algebras, progressing from general theory and terms to equality. Part Three offers three items on polyadic Boolean algebras, including a survey of predicates, terms, operations, and equality. The book concludes with an additional bibliography and index.
Boolean Algebra and Its Applications
Author: J. Eldon Whitesitt
Publisher: Courier Corporation
ISBN: 0486158160
Category : Mathematics
Languages : en
Pages : 194
Book Description
Introductory treatment begins with set theory and fundamentals of Boolean algebra, proceeding to concise accounts of applications to symbolic logic, switching circuits, relay circuits, binary arithmetic, and probability theory. 1961 edition.
Publisher: Courier Corporation
ISBN: 0486158160
Category : Mathematics
Languages : en
Pages : 194
Book Description
Introductory treatment begins with set theory and fundamentals of Boolean algebra, proceeding to concise accounts of applications to symbolic logic, switching circuits, relay circuits, binary arithmetic, and probability theory. 1961 edition.
Algebraic Methods in Philosophical Logic
Author: J. Michael Dunn
Publisher: OUP Oxford
ISBN: 0191589225
Category :
Languages : en
Pages : 490
Book Description
This comprehensive text demonstrates how various notions of logic can be viewed as notions of universal algebra. It is aimed primarily for logisticians in mathematics, philosophy, computer science and linguistics with an interest in algebraic logic, but is also accessible to those from a non-logistics background. It is suitable for researchers, graduates and advanced undergraduates who have an introductory knowledge of algebraic logic providing more advanced concepts, as well as more theoretical aspects. The main theme is that standard algebraic results (representations) translate into standard logical results (completeness). Other themes involve identification of a class of algebras appropriate for classical and non-classical logic studies, including: gaggles, distributoids, partial- gaggles, and tonoids. An imporatant sub title is that logic is fundamentally information based, with its main elements being propositions, that can be understood as sets of information states. Logics are considered in various senses e.g. systems of theorems, consequence relations and, symmetric consequence relations.
Publisher: OUP Oxford
ISBN: 0191589225
Category :
Languages : en
Pages : 490
Book Description
This comprehensive text demonstrates how various notions of logic can be viewed as notions of universal algebra. It is aimed primarily for logisticians in mathematics, philosophy, computer science and linguistics with an interest in algebraic logic, but is also accessible to those from a non-logistics background. It is suitable for researchers, graduates and advanced undergraduates who have an introductory knowledge of algebraic logic providing more advanced concepts, as well as more theoretical aspects. The main theme is that standard algebraic results (representations) translate into standard logical results (completeness). Other themes involve identification of a class of algebras appropriate for classical and non-classical logic studies, including: gaggles, distributoids, partial- gaggles, and tonoids. An imporatant sub title is that logic is fundamentally information based, with its main elements being propositions, that can be understood as sets of information states. Logics are considered in various senses e.g. systems of theorems, consequence relations and, symmetric consequence relations.
Proof Theory and Algebra in Logic
Author: Hiroakira Ono
Publisher: Springer
ISBN: 9811379971
Category : Philosophy
Languages : en
Pages : 164
Book Description
This book offers a concise introduction to both proof-theory and algebraic methods, the core of the syntactic and semantic study of logic respectively. The importance of combining these two has been increasingly recognized in recent years. It highlights the contrasts between the deep, concrete results using the former and the general, abstract ones using the latter. Covering modal logics, many-valued logics, superintuitionistic and substructural logics, together with their algebraic semantics, the book also provides an introduction to nonclassical logic for undergraduate or graduate level courses.The book is divided into two parts: Proof Theory in Part I and Algebra in Logic in Part II. Part I presents sequent systems and discusses cut elimination and its applications in detail. It also provides simplified proof of cut elimination, making the topic more accessible. The last chapter of Part I is devoted to clarification of the classes of logics that are discussed in the second part. Part II focuses on algebraic semantics for these logics. At the same time, it is a gentle introduction to the basics of algebraic logic and universal algebra with many examples of their applications in logic. Part II can be read independently of Part I, with only minimum knowledge required, and as such is suitable as a textbook for short introductory courses on algebra in logic.
Publisher: Springer
ISBN: 9811379971
Category : Philosophy
Languages : en
Pages : 164
Book Description
This book offers a concise introduction to both proof-theory and algebraic methods, the core of the syntactic and semantic study of logic respectively. The importance of combining these two has been increasingly recognized in recent years. It highlights the contrasts between the deep, concrete results using the former and the general, abstract ones using the latter. Covering modal logics, many-valued logics, superintuitionistic and substructural logics, together with their algebraic semantics, the book also provides an introduction to nonclassical logic for undergraduate or graduate level courses.The book is divided into two parts: Proof Theory in Part I and Algebra in Logic in Part II. Part I presents sequent systems and discusses cut elimination and its applications in detail. It also provides simplified proof of cut elimination, making the topic more accessible. The last chapter of Part I is devoted to clarification of the classes of logics that are discussed in the second part. Part II focuses on algebraic semantics for these logics. At the same time, it is a gentle introduction to the basics of algebraic logic and universal algebra with many examples of their applications in logic. Part II can be read independently of Part I, with only minimum knowledge required, and as such is suitable as a textbook for short introductory courses on algebra in logic.
Universal Algebra, Algebraic Logic, and Databases
Author: Boris Isaakovich Plotkin
Publisher: Boom Koninklijke Uitgevers
ISBN: 9780792326656
Category : Computers
Languages : en
Pages : 462
Book Description
Modern algebra, which not long ago seemed to be a science divorced from real life, now has numerous applications. Many fine algebraic structures are endowed with meaningful contents. Now and then practice suggests new and unexpected structures enriching algebra. This does not mean that algebra has become merely a tool for applications. Quite the contrary, it significantly benefits from the new connections. The present book is devoted to some algebraic aspects of the theory of databases. It consists of three parts. The first part contains information about universal algebra, algebraic logic is the subject of the second part, and the third one deals with databases. The algebraic material of the flI'St two parts serves the common purpose of applying algebra to databases. The book is intended for use by mathematicians, and mainly by algebraists, who realize the necessity to unite theory and practice. It is also addressed to programmers, engineers and all potential users of mathematics who want to construct their models with the help of algebra and logic. Nowadays, the majority of professional mathematicians work in close cooperation with representatives of applied sciences and even industrial technology. It is neces sary to develop an ability to see mathematics in different particular situations. One of the tasks of this book is to promote the acquisition of such skills.
Publisher: Boom Koninklijke Uitgevers
ISBN: 9780792326656
Category : Computers
Languages : en
Pages : 462
Book Description
Modern algebra, which not long ago seemed to be a science divorced from real life, now has numerous applications. Many fine algebraic structures are endowed with meaningful contents. Now and then practice suggests new and unexpected structures enriching algebra. This does not mean that algebra has become merely a tool for applications. Quite the contrary, it significantly benefits from the new connections. The present book is devoted to some algebraic aspects of the theory of databases. It consists of three parts. The first part contains information about universal algebra, algebraic logic is the subject of the second part, and the third one deals with databases. The algebraic material of the flI'St two parts serves the common purpose of applying algebra to databases. The book is intended for use by mathematicians, and mainly by algebraists, who realize the necessity to unite theory and practice. It is also addressed to programmers, engineers and all potential users of mathematics who want to construct their models with the help of algebra and logic. Nowadays, the majority of professional mathematicians work in close cooperation with representatives of applied sciences and even industrial technology. It is neces sary to develop an ability to see mathematics in different particular situations. One of the tasks of this book is to promote the acquisition of such skills.