Linear Chaos

Linear Chaos PDF Author: Karl-G. Grosse-Erdmann
Publisher: Springer Science & Business Media
ISBN: 1447121708
Category : Mathematics
Languages : en
Pages : 391

Get Book Here

Book Description
It is commonly believed that chaos is linked to non-linearity, however many (even quite natural) linear dynamical systems exhibit chaotic behavior. The study of these systems is a young and remarkably active field of research, which has seen many landmark results over the past two decades. Linear dynamics lies at the crossroads of several areas of mathematics including operator theory, complex analysis, ergodic theory and partial differential equations. At the same time its basic ideas can be easily understood by a wide audience. Written by two renowned specialists, Linear Chaos provides a welcome introduction to this theory. Split into two parts, part I presents a self-contained introduction to the dynamics of linear operators, while part II covers selected, largely independent topics from linear dynamics. More than 350 exercises and many illustrations are included, and each chapter contains a further ‘Sources and Comments’ section. The only prerequisites are a familiarity with metric spaces, the basic theory of Hilbert and Banach spaces and fundamentals of complex analysis. More advanced tools, only needed occasionally, are provided in two appendices. A self-contained exposition, this book will be suitable for self-study and will appeal to advanced undergraduate or beginning graduate students. It will also be of use to researchers in other areas of mathematics such as partial differential equations, dynamical systems and ergodic theory.

Linear Chaos

Linear Chaos PDF Author: Karl-G. Grosse-Erdmann
Publisher: Springer Science & Business Media
ISBN: 1447121708
Category : Mathematics
Languages : en
Pages : 391

Get Book Here

Book Description
It is commonly believed that chaos is linked to non-linearity, however many (even quite natural) linear dynamical systems exhibit chaotic behavior. The study of these systems is a young and remarkably active field of research, which has seen many landmark results over the past two decades. Linear dynamics lies at the crossroads of several areas of mathematics including operator theory, complex analysis, ergodic theory and partial differential equations. At the same time its basic ideas can be easily understood by a wide audience. Written by two renowned specialists, Linear Chaos provides a welcome introduction to this theory. Split into two parts, part I presents a self-contained introduction to the dynamics of linear operators, while part II covers selected, largely independent topics from linear dynamics. More than 350 exercises and many illustrations are included, and each chapter contains a further ‘Sources and Comments’ section. The only prerequisites are a familiarity with metric spaces, the basic theory of Hilbert and Banach spaces and fundamentals of complex analysis. More advanced tools, only needed occasionally, are provided in two appendices. A self-contained exposition, this book will be suitable for self-study and will appeal to advanced undergraduate or beginning graduate students. It will also be of use to researchers in other areas of mathematics such as partial differential equations, dynamical systems and ergodic theory.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos PDF Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532

Get Book Here

Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Differential Equations, Dynamical Systems, and an Introduction to Chaos PDF Author: Morris W. Hirsch
Publisher: Academic Press
ISBN: 0123497035
Category : Business & Economics
Languages : en
Pages : 433

Get Book Here

Book Description
Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.

Nonlinear Dynamics and Quantum Chaos

Nonlinear Dynamics and Quantum Chaos PDF Author: Sandro Wimberger
Publisher: Springer
ISBN: 331906343X
Category : Science
Languages : en
Pages : 215

Get Book Here

Book Description
The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.

Complex Nonlinearity

Complex Nonlinearity PDF Author: Vladimir G. Ivancevic
Publisher: Springer Science & Business Media
ISBN: 3540793577
Category : Science
Languages : en
Pages : 855

Get Book Here

Book Description
Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to the topology change of this curved geometrical stage, usually called configuration manifold. Chapter 3 elaborates on geometry and topology change in relation with complex nonlinearity and chaos. Chapter 4 develops general nonlinear dynamics, continuous and discrete, deterministic and stochastic, in the unique form of path integrals and their action-amplitude formalism. This most natural framework for representing both phase transitions and topology change starts with Feynman’s sum over histories, to be quickly generalized into the sum over geometries and topologies. The last Chapter puts all the previously developed techniques together and presents the unified form of complex nonlinearity. Here we have chaos, phase transitions, geometrical dynamics and topology change, all working together in the form of path integrals. The objective of this book is to provide a serious reader with a serious scientific tool that will enable them to actually perform a competitive research in modern complex nonlinearity. It includes a comprehensive bibliography on the subject and a detailed index. Target readership includes all researchers and students of complex nonlinear systems (in physics, mathematics, engineering, chemistry, biology, psychology, sociology, economics, medicine, etc.), working both in industry/clinics and academia.

Linear Chaos

Linear Chaos PDF Author: Karl-G. Grosse-Erdmann
Publisher: Springer Science & Business Media
ISBN: 9781447121695
Category : Mathematics
Languages : en
Pages : 388

Get Book Here

Book Description
This book introduces the dynamics of linear operators, and covers selected, largely independent topics from linear dynamics. The text is supplemented with more than 350 exercises and many illustrations, and a ‘Sources and Comments’ section in each chapter.

Chaos

Chaos PDF Author: Kathleen Alligood
Publisher: Springer
ISBN: 3642592813
Category : Mathematics
Languages : en
Pages : 620

Get Book Here

Book Description
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.

The Chaos Avant-garde

The Chaos Avant-garde PDF Author: Ralph Abraham
Publisher: World Scientific
ISBN: 9789812386472
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
This book is an authoritative and unique reference for the history of chaos theory, told by the pioneers themselves. It also provides an excellent historical introduction to the concepts. There are eleven contributions, and six of them are published here for the first time OCo two by Steve Smale, three by Yoshisuke Ueda, and one each by Ralph Abraham, Edward Lorenz, Christian Mira, Floris Takens, T Y Li and James A Yorke, and Otto E Rossler. Contents: On How I Got Started in Dynamical Systems 1959OCo1962 (S Smale); Finding a Horseshoe on the Beaches of Rio (S Smale); Strange Attractors and the Origin of Chaos (Y Ueda); My Encounter with Chaos (Y Ueda); Reflections on the Origin of the Broken-Egg Chaotic Attractor (Y Ueda); The Chaos Revolution: A Personal View (R Abraham); The Butterfly Effect (E Lorenz); I Gumowski and a Toulouse Research Group in the OC PrehistoricOCO Times of Chaotic Dynamics (C Mira); The Turbulence Paper of D Ruelle & F Takens (F Takens); Exploring Chaos on an Interval (T Y Li & J A Yorke); Chaos, Hyperchaos and the Double-Perspective (O E RAssler). Readership: Educators and university students of science and mathematics."

An Exploration of Dynamical Systems and Chaos

An Exploration of Dynamical Systems and Chaos PDF Author: John H. Argyris
Publisher: Springer
ISBN: 3662460424
Category : Technology & Engineering
Languages : en
Pages : 884

Get Book Here

Book Description
This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlarged second edition which comprises recently obtained research results of topical interest, and has been extended to include a new section on the basic concepts of probability theory. A completely new chapter on fully developed turbulence presents the successes of chaos theory, its limitations as well as future trends in the development of complex spatio-temporal structures. "This book will be of valuable help for my lectures" Hermann Haken, Stuttgart "This text-book should not be missing in any introductory lecture on non-linear systems and deterministic chaos" Wolfgang Kinzel, Würzburg “This well written book represents a comprehensive treatise on dynamical systems. It may serve as reference book for the whole field of nonlinear and chaotic systems and reports in a unique way on scientific developments of recent decades as well as important applications.” Joachim Peinke, Institute of Physics, Carl-von-Ossietzky University Oldenburg, Germany

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos PDF Author: Stephen Wiggins
Publisher: Springer Science & Business Media
ISBN: 0387217495
Category : Mathematics
Languages : en
Pages : 860

Get Book Here

Book Description
This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik