Fitting Models to Biological Data Using Linear and Nonlinear Regression

Fitting Models to Biological Data Using Linear and Nonlinear Regression PDF Author: Harvey Motulsky
Publisher: Oxford University Press
ISBN: 9780198038344
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.

Fitting Models to Biological Data Using Linear and Nonlinear Regression

Fitting Models to Biological Data Using Linear and Nonlinear Regression PDF Author: Harvey Motulsky
Publisher: Oxford University Press
ISBN: 9780198038344
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.

Applications of Linear and Nonlinear Models

Applications of Linear and Nonlinear Models PDF Author: Erik Grafarend
Publisher: Springer Science & Business Media
ISBN: 3642222412
Category : Science
Languages : en
Pages : 1026

Get Book Here

Book Description
Here we present a nearly complete treatment of the Grand Universe of linear and weakly nonlinear regression models within the first 8 chapters. Our point of view is both an algebraic view as well as a stochastic one. For example, there is an equivalent lemma between a best, linear uniformly unbiased estimation (BLUUE) in a Gauss-Markov model and a least squares solution (LESS) in a system of linear equations. While BLUUE is a stochastic regression model, LESS is an algebraic solution. In the first six chapters we concentrate on underdetermined and overdeterimined linear systems as well as systems with a datum defect. We review estimators/algebraic solutions of type MINOLESS, BLIMBE, BLUMBE, BLUUE, BIQUE, BLE, BIQUE and Total Least Squares. The highlight is the simultaneous determination of the first moment and the second central moment of a probability distribution in an inhomogeneous multilinear estimation by the so called E-D correspondence as well as its Bayes design. In addition, we discuss continuous networks versus discrete networks, use of Grassmann-Pluecker coordinates, criterion matrices of type Taylor-Karman as well as FUZZY sets. Chapter seven is a speciality in the treatment of an overdetermined system of nonlinear equations on curved manifolds. The von Mises-Fisher distribution is characteristic for circular or (hyper) spherical data. Our last chapter eight is devoted to probabilistic regression, the special Gauss-Markov model with random effects leading to estimators of type BLIP and VIP including Bayesian estimation. A great part of the work is presented in four Appendices. Appendix A is a treatment, of tensor algebra, namely linear algebra, matrix algebra and multilinear algebra. Appendix B is devoted to sampling distributions and their use in terms of confidence intervals and confidence regions. Appendix C reviews the elementary notions of statistics, namely random events and stochastic processes. Appendix D introduces the basics of Groebner basis algebra, its careful definition, the Buchberger Algorithm, especially the C. F. Gauss combinatorial algorithm.

Linear and Nonlinear Models for the Analysis of Repeated Measurements

Linear and Nonlinear Models for the Analysis of Repeated Measurements PDF Author: Edward Vonesh
Publisher: CRC Press
ISBN: 9780824782481
Category : Mathematics
Languages : en
Pages : 590

Get Book Here

Book Description
Integrates the latest theory, methodology and applications related to the design and analysis of repeated measurement. The text covers a broad range of topics, including the analysis of repeated measures design, general crossover designs, and linear and nonlinear regression models. It also contains a 3.5 IBM compatible disk, with software to implement immediately the techniques.

Linear and Non-Linear System Theory

Linear and Non-Linear System Theory PDF Author: T Thyagarajan
Publisher: CRC Press
ISBN: 1000204332
Category : Technology & Engineering
Languages : en
Pages : 384

Get Book Here

Book Description
Linear and Non-Linear System Theory focuses on the basics of linear and non-linear systems, optimal control and optimal estimation with an objective to understand the basics of state space approach linear and non-linear systems and its analysis thereof. Divided into eight chapters, materials cover an introduction to the advanced topics in the field of linear and non-linear systems, optimal control and estimation supported by mathematical tools, detailed case studies and numerical and exercise problems. This book is aimed at senior undergraduate and graduate students in electrical, instrumentation, electronics, chemical, control engineering and other allied branches of engineering. Features Covers both linear and non-linear system theory Explores state feedback control and state estimator concepts Discusses non-linear systems and phase plane analysis Includes non-linear system stability and bifurcation behaviour Elaborates optimal control and estimation

Linear and Nonlinear Models

Linear and Nonlinear Models PDF Author: Erik W. Grafarend
Publisher:
ISBN: 9783110162165
Category : Mathematical models
Languages : en
Pages : 0

Get Book Here

Book Description
This monograph contains a thorough treatment of methods for solving over- and underdetermined systems of equations, e.g. the minimum norm solution method with respect to weighted norms. The considered equations can be nonlinear or linear, and deterministic models as well as probabilistic ones are considered. An extensive appendix provides all necessary prerequisites like matrix algebra, matrix analysis and Lagrange multipliers, and a long list of references is also included.

Nonlinear Regression Analysis and Its Applications

Nonlinear Regression Analysis and Its Applications PDF Author: Douglas M. Bates
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 398

Get Book Here

Book Description
Provides a presentation of the theoretical, practical, and computational aspects of nonlinear regression. There is background material on linear regression, including a geometrical development for linear and nonlinear least squares.

Nonlinear Regression with R

Nonlinear Regression with R PDF Author: Christian Ritz
Publisher: Springer Science & Business Media
ISBN: 0387096167
Category : Mathematics
Languages : en
Pages : 151

Get Book Here

Book Description
- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.

Nonlinear Models for Repeated Measurement Data

Nonlinear Models for Repeated Measurement Data PDF Author: Marie Davidian
Publisher: Routledge
ISBN: 1351428152
Category : Mathematics
Languages : en
Pages : 377

Get Book Here

Book Description
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.

Nonlinear Regression

Nonlinear Regression PDF Author: George A. F. Seber
Publisher: John Wiley & Sons
ISBN: 0471725307
Category : Mathematics
Languages : en
Pages : 800

Get Book Here

Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of Nonlinear Regression "A very good book and an important one in that it is likely to become a standard reference for all interested in nonlinear regression; and I would imagine that any statistician concerned with nonlinear regression would want a copy on his shelves." –The Statistician "Nonlinear Regression also includes a reference list of over 700 entries. The compilation of this material and cross-referencing of it is one of the most valuable aspects of the book. Nonlinear Regression can provide the researcher unfamiliar with a particular specialty area of nonlinear regression an introduction to that area of nonlinear regression and access to the appropriate references . . . Nonlinear Regression provides by far the broadest discussion of nonlinear regression models currently available and will be a valuable addition to the library of anyone interested in understanding and using such models including the statistical researcher." –Mathematical Reviews

Numerical Methods for Nonlinear Engineering Models

Numerical Methods for Nonlinear Engineering Models PDF Author: John R. Hauser
Publisher: Springer Science & Business Media
ISBN: 1402099207
Category : Technology & Engineering
Languages : en
Pages : 1013

Get Book Here

Book Description
There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.