Author: Mike X. Cohen
Publisher:
ISBN: 9789083136608
Category : Mathematics
Languages : en
Pages : 584
Book Description
Linear algebra is perhaps the most important branch of mathematics for computational sciences, including machine learning, AI, data science, statistics, simulations, computer graphics, multivariate analyses, matrix decompositions, signal processing, and so on.The way linear algebra is presented in traditional textbooks is different from how professionals use linear algebra in computers to solve real-world applications in machine learning, data science, statistics, and signal processing. For example, the "determinant" of a matrix is important for linear algebra theory, but should you actually use the determinant in practical applications? The answer may surprise you!If you are interested in learning the mathematical concepts linear algebra and matrix analysis, but also want to apply those concepts to data analyses on computers (e.g., statistics or signal processing), then this book is for you. You'll see all the math concepts implemented in MATLAB and in Python.Unique aspects of this book: - Clear and comprehensible explanations of concepts and theories in linear algebra. - Several distinct explanations of the same ideas, which is a proven technique for learning. - Visualization using graphs, which strengthens the geometric intuition of linear algebra. - Implementations in MATLAB and Python. Com'on, in the real world, you never solve math problems by hand! You need to know how to implement math in software! - Beginner to intermediate topics, including vectors, matrix multiplications, least-squares projections, eigendecomposition, and singular-value decomposition. - Strong focus on modern applications-oriented aspects of linear algebra and matrix analysis. - Intuitive visual explanations of diagonalization, eigenvalues and eigenvectors, and singular value decomposition. - Codes (MATLAB and Python) are provided to help you understand and apply linear algebra concepts on computers. - A combination of hand-solved exercises and more advanced code challenges. Math is not a spectator sport!
Linear Algebra: Theory, Intuition, Code
Linear Analysis and Representation Theory
Author: Steven A. Gaal
Publisher: Springer Science & Business Media
ISBN: 3642807410
Category : Mathematics
Languages : en
Pages : 701
Book Description
In an age when more and more items. are made to be quickly disposable or soon become obsolete due to either progress or other man caused reasons it seems almost anachronistic to write a book in the classical sense. A mathematics book becomes an indespensible companion, if it is worthy of such a relation, not by being rapidly read from cover to cover but by frequent browsing, consultation and other occasional use. While trying to create such a work I tried not to be encyclopedic but rather select only those parts of each chosen topic which I could present clearly and accurately in a formulation which is likely to last. The material I chose is all mathematics which is interesting and important both for the mathematician and to a large extent also for the mathematical physicist. I regret that at present I could not give a similar account on direct integrals and the representation theory of certain classes of Lie groups. I carefully kept the level of presentation throughout the whole book as uniform as possible. Certain introductory sections are kept shorter and are perhaps slightly more detailed in order to help the newcomer prog ress with it at the same rate as the more experienced person is going to proceed with his study of the details.
Publisher: Springer Science & Business Media
ISBN: 3642807410
Category : Mathematics
Languages : en
Pages : 701
Book Description
In an age when more and more items. are made to be quickly disposable or soon become obsolete due to either progress or other man caused reasons it seems almost anachronistic to write a book in the classical sense. A mathematics book becomes an indespensible companion, if it is worthy of such a relation, not by being rapidly read from cover to cover but by frequent browsing, consultation and other occasional use. While trying to create such a work I tried not to be encyclopedic but rather select only those parts of each chosen topic which I could present clearly and accurately in a formulation which is likely to last. The material I chose is all mathematics which is interesting and important both for the mathematician and to a large extent also for the mathematical physicist. I regret that at present I could not give a similar account on direct integrals and the representation theory of certain classes of Lie groups. I carefully kept the level of presentation throughout the whole book as uniform as possible. Certain introductory sections are kept shorter and are perhaps slightly more detailed in order to help the newcomer prog ress with it at the same rate as the more experienced person is going to proceed with his study of the details.
Linear Algebra and Matrix Theory
Author: Robert R. Stoll
Publisher: Courier Corporation
ISBN: 0486623181
Category : Mathematics
Languages : en
Pages : 290
Book Description
Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.
Publisher: Courier Corporation
ISBN: 0486623181
Category : Mathematics
Languages : en
Pages : 290
Book Description
Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.
Coding the Matrix
Author: Philip N. Klein
Publisher:
ISBN: 9780615856735
Category : Algebras, Linear
Languages : en
Pages : 530
Book Description
An engaging introduction to vectors and matrices and the algorithms that operate on them, intended for the student who knows how to program. Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by "doing," writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant "xkcd" comics. Chapters: "The Function," "The Field," "The Vector," "The Vector Space," "The Matrix," "The Basis," "Dimension," "Gaussian Elimination," "The Inner Product," "Special Bases," "The Singular Value Decomposition," "The Eigenvector," "The Linear Program" A new edition of this text, incorporating corrections and an expanded index, has been issued as of September 4, 2013, and will soon be available on Amazon.
Publisher:
ISBN: 9780615856735
Category : Algebras, Linear
Languages : en
Pages : 530
Book Description
An engaging introduction to vectors and matrices and the algorithms that operate on them, intended for the student who knows how to program. Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by "doing," writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant "xkcd" comics. Chapters: "The Function," "The Field," "The Vector," "The Vector Space," "The Matrix," "The Basis," "Dimension," "Gaussian Elimination," "The Inner Product," "Special Bases," "The Singular Value Decomposition," "The Eigenvector," "The Linear Program" A new edition of this text, incorporating corrections and an expanded index, has been issued as of September 4, 2013, and will soon be available on Amazon.
Linear Algebra Coding with Python
Author: Hyun-Seok Son
Publisher: Hyun-Seok Son
ISBN:
Category : Art
Languages : en
Pages : 316
Book Description
Python is one of the most popular languages for data analysis and prediction. What's more, tensorflow and torch, useful tools of recent deep learning, are fully implemented by Python. The basic form of data in these languages is an array, created by Python's important package numpy. In particular, arrays are the basis of data science because they have structures of vectors and matrices that give the meaning of direction and magnitude to each value in the data set. The matrix structure allows transformation to a simple form without losing the basic characteristics of a vast data set. These transformations are useful for efficient processing of data and for finding implicit characteristics. Linear Algebra, a field that provides a basic theory of vectors and matrices, provides many algorithms to increase the accuracy and speed of computation for analyzing data and to discover the characteristics of a data set. These algorithms are very useful for understanding the computing process of probability, statistics and the learning machine. This book introduces many basics of linear algebra using Python packages numpy, sympy, and so on. Chapters 1 and 2 introduce the creation and characteristics of vectors and matrices. Chapter 3 describes the linear system(linear combination) through the process finding the solution in a system of simultaneous equations. Vector space, a concept introduced in Chapter 4, is used to infer the collective characteristics and relationships of each vector of a linear system. Chapter 5 introduces the coordinate system to represent the linear system geometrically. Chapter 6 introduces the process of transforming while maintaining basic characteristics such as vectors and matrices. Finally, Chapter 7 describes several ways to decompose the original form into a simple form. In this process, we use a variety of Python functions.
Publisher: Hyun-Seok Son
ISBN:
Category : Art
Languages : en
Pages : 316
Book Description
Python is one of the most popular languages for data analysis and prediction. What's more, tensorflow and torch, useful tools of recent deep learning, are fully implemented by Python. The basic form of data in these languages is an array, created by Python's important package numpy. In particular, arrays are the basis of data science because they have structures of vectors and matrices that give the meaning of direction and magnitude to each value in the data set. The matrix structure allows transformation to a simple form without losing the basic characteristics of a vast data set. These transformations are useful for efficient processing of data and for finding implicit characteristics. Linear Algebra, a field that provides a basic theory of vectors and matrices, provides many algorithms to increase the accuracy and speed of computation for analyzing data and to discover the characteristics of a data set. These algorithms are very useful for understanding the computing process of probability, statistics and the learning machine. This book introduces many basics of linear algebra using Python packages numpy, sympy, and so on. Chapters 1 and 2 introduce the creation and characteristics of vectors and matrices. Chapter 3 describes the linear system(linear combination) through the process finding the solution in a system of simultaneous equations. Vector space, a concept introduced in Chapter 4, is used to infer the collective characteristics and relationships of each vector of a linear system. Chapter 5 introduces the coordinate system to represent the linear system geometrically. Chapter 6 introduces the process of transforming while maintaining basic characteristics such as vectors and matrices. Finally, Chapter 7 describes several ways to decompose the original form into a simple form. In this process, we use a variety of Python functions.
Thirty-three Miniatures
Author: Jiří Matoušek
Publisher: American Mathematical Soc.
ISBN: 0821849778
Category : Mathematics
Languages : en
Pages : 196
Book Description
This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)
Publisher: American Mathematical Soc.
ISBN: 0821849778
Category : Mathematics
Languages : en
Pages : 196
Book Description
This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)
Linear Algebra and Learning from Data
Author: Gilbert Strang
Publisher: Wellesley-Cambridge Press
ISBN: 9780692196380
Category : Computers
Languages : en
Pages : 0
Book Description
Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.
Publisher: Wellesley-Cambridge Press
ISBN: 9780692196380
Category : Computers
Languages : en
Pages : 0
Book Description
Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.
Linear Algebra
Author: Elizabeth S. Meckes
Publisher: Cambridge University Press
ISBN: 1316836029
Category : Mathematics
Languages : en
Pages : 448
Book Description
Linear Algebra offers a unified treatment of both matrix-oriented and theoretical approaches to the course, which will be useful for classes with a mix of mathematics, physics, engineering, and computer science students. Major topics include singular value decomposition, the spectral theorem, linear systems of equations, vector spaces, linear maps, matrices, eigenvalues and eigenvectors, linear independence, bases, coordinates, dimension, matrix factorizations, inner products, norms, and determinants.
Publisher: Cambridge University Press
ISBN: 1316836029
Category : Mathematics
Languages : en
Pages : 448
Book Description
Linear Algebra offers a unified treatment of both matrix-oriented and theoretical approaches to the course, which will be useful for classes with a mix of mathematics, physics, engineering, and computer science students. Major topics include singular value decomposition, the spectral theorem, linear systems of equations, vector spaces, linear maps, matrices, eigenvalues and eigenvectors, linear independence, bases, coordinates, dimension, matrix factorizations, inner products, norms, and determinants.
Analyzing Neural Time Series Data
Author: Mike X Cohen
Publisher: MIT Press
ISBN: 0262019876
Category : Psychology
Languages : en
Pages : 615
Book Description
A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.
Publisher: MIT Press
ISBN: 0262019876
Category : Psychology
Languages : en
Pages : 615
Book Description
A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.
Introduction to Linear Algebra and Differential Equations
Author: John W. Dettman
Publisher: Courier Corporation
ISBN: 0486158314
Category : Mathematics
Languages : en
Pages : 442
Book Description
Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.
Publisher: Courier Corporation
ISBN: 0486158314
Category : Mathematics
Languages : en
Pages : 442
Book Description
Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.