Author: Masashi Mizukami
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 24
Book Description
Linear Aerospike SR-71 Experiment (LASRE): Aerospace Propulsion Hazard Mitigation Systems
The SR-71 Test Bed Aircraft: A Facility for High-Speed Flight Research
Author: Stephen Corda
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 40
Book Description
The SR-71 test bed aircraft is shown to be a unique platform to flight-test large experiments to supersonic Mach numbers. The test bed hardware mounted on the SR-71 upper fuselage is described. This test bed hardware is composed of a fairing structure called the "canoe" and a large "reflection plane" flat plate for mounting experiments. Total experiment weights, including the canoe and reflection plane, as heavy as 14,500 lb can be mounted on the aircraft and flight-tested to speeds as fast as Mach 3.2 and altitudes as high as 80,000 ft. A brief description of the SR-71 aircraft is given, including details of the structural modifications to the fuselage, modifications to the J58 engines to provide increased thrust, and the addition of a research instrumentation system. Information is presented based on flight data that describes the SR-71 test bed aerodynamics, stability and control, structural and thermal loads, the canoe internal environment, and reflection plane flow quality. Guidelines for designing SR-71 test bed experiments are also provided.
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 40
Book Description
The SR-71 test bed aircraft is shown to be a unique platform to flight-test large experiments to supersonic Mach numbers. The test bed hardware mounted on the SR-71 upper fuselage is described. This test bed hardware is composed of a fairing structure called the "canoe" and a large "reflection plane" flat plate for mounting experiments. Total experiment weights, including the canoe and reflection plane, as heavy as 14,500 lb can be mounted on the aircraft and flight-tested to speeds as fast as Mach 3.2 and altitudes as high as 80,000 ft. A brief description of the SR-71 aircraft is given, including details of the structural modifications to the fuselage, modifications to the J58 engines to provide increased thrust, and the addition of a research instrumentation system. Information is presented based on flight data that describes the SR-71 test bed aerodynamics, stability and control, structural and thermal loads, the canoe internal environment, and reflection plane flow quality. Guidelines for designing SR-71 test bed experiments are also provided.
Flight Testing the Linear Aerospike SR-71 Experiment (LASRE)
Author: Stephen Corda
Publisher:
ISBN:
Category : Aerospace planes
Languages : en
Pages : 28
Book Description
The design of the next generation of space access vehicles has led to a unique flight test that blends the space and flight research worlds. The new vehicle designs, such as the X-33 vehicle and Reusable Launch Vehicle (RLV) are powered by linear aerospike rocket engines. Conceived of in the 1960's, these aerospike engines have yet to be flown, and many questions remain regarding aerospike engine performance and efficiency in flight. To provide some of these data before flying on the X-33 vehicle and the RLV, a spacecraft rocket engine had been flight-tested atop the NASA SR-71 aircraft as the Linear Aerospike SR-71 Experiment (LASRE). A 20 percent-scale, semispan model of the X-33 vehicle, the aerospike engine, and all the required fuel and oxidizer tanks and propellant feed systems have been mounted atop the SR-71 airplane for this experiment. A major technical objective of the LASRE flight test is to obtain installed-engine performance flight data for comparison to wind-tunnel results and for the development of computational fluid dynamics-based design methodologies. The ultimate goal of firing the aerospike rocket engine in flight is still forthcoming. An extensive design and development phase of the experiment hardware has been completed, including approximately 40 ground tests. Five flights of the LASRE and firing the rocket engine using inert liquid nitrogen and helium in place of liquid oxygen and hydrogen have been successfully completed.
Publisher:
ISBN:
Category : Aerospace planes
Languages : en
Pages : 28
Book Description
The design of the next generation of space access vehicles has led to a unique flight test that blends the space and flight research worlds. The new vehicle designs, such as the X-33 vehicle and Reusable Launch Vehicle (RLV) are powered by linear aerospike rocket engines. Conceived of in the 1960's, these aerospike engines have yet to be flown, and many questions remain regarding aerospike engine performance and efficiency in flight. To provide some of these data before flying on the X-33 vehicle and the RLV, a spacecraft rocket engine had been flight-tested atop the NASA SR-71 aircraft as the Linear Aerospike SR-71 Experiment (LASRE). A 20 percent-scale, semispan model of the X-33 vehicle, the aerospike engine, and all the required fuel and oxidizer tanks and propellant feed systems have been mounted atop the SR-71 airplane for this experiment. A major technical objective of the LASRE flight test is to obtain installed-engine performance flight data for comparison to wind-tunnel results and for the development of computational fluid dynamics-based design methodologies. The ultimate goal of firing the aerospike rocket engine in flight is still forthcoming. An extensive design and development phase of the experiment hardware has been completed, including approximately 40 ground tests. Five flights of the LASRE and firing the rocket engine using inert liquid nitrogen and helium in place of liquid oxygen and hydrogen have been successfully completed.
Evaluation of the Linear Aerospike Sr-71 Experiment (Lasre) Oxygen Sensor
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721192335
Category :
Languages : en
Pages : 38
Book Description
The Linear Aerospike SR-71 Experiment (LASRE) was a propulsion flight experiment for advanced space vehicles such as the X-33 and reusable launch vehicle. A linear aerospike rocket engine was integrated into a semi-span of an X-33-like lifting body shape (model), and carried on top of an SR-71 aircraft at NASA Dryden Flight Research Center. Because no flight data existed for aerospike nozzles, the primary objective of the LASRE flight experiment was to evaluate flight effects on the engine performance over a range of altitudes and Mach numbers. Because it contained a large quantity of energy in the form of fuel, oxidizer, hypergolics, and gases at very high pressures, the LASRE propulsion system posed a major hazard for fire or explosion. Therefore, a propulsion-hazard mitigation system was created for LASRE that included a nitrogen purge system. Oxygen sensors were a critical part of the nitrogen purge system because they measured purge operation and effectiveness. Because the available oxygen sensors were not designed for flight testing, a laboratory study investigated oxygen-sensor characteristics and accuracy over a range of altitudes and oxygen concentrations. Laboratory test data made it possible to properly calibrate the sensors for flight. Such data also provided a more accurate error prediction than the manufacturer's specification. This predictive accuracy increased confidence in the sensor output during critical phases of the flight. This paper presents the findings of this laboratory test. Ennix, Kimberly A. and Corpening, Griffin P. and Jarvis, Michele and Chiles, Harry R. Armstrong Flight Research Center NASA/TM-1999-206589, NAS 1.15:206589, H-2377
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721192335
Category :
Languages : en
Pages : 38
Book Description
The Linear Aerospike SR-71 Experiment (LASRE) was a propulsion flight experiment for advanced space vehicles such as the X-33 and reusable launch vehicle. A linear aerospike rocket engine was integrated into a semi-span of an X-33-like lifting body shape (model), and carried on top of an SR-71 aircraft at NASA Dryden Flight Research Center. Because no flight data existed for aerospike nozzles, the primary objective of the LASRE flight experiment was to evaluate flight effects on the engine performance over a range of altitudes and Mach numbers. Because it contained a large quantity of energy in the form of fuel, oxidizer, hypergolics, and gases at very high pressures, the LASRE propulsion system posed a major hazard for fire or explosion. Therefore, a propulsion-hazard mitigation system was created for LASRE that included a nitrogen purge system. Oxygen sensors were a critical part of the nitrogen purge system because they measured purge operation and effectiveness. Because the available oxygen sensors were not designed for flight testing, a laboratory study investigated oxygen-sensor characteristics and accuracy over a range of altitudes and oxygen concentrations. Laboratory test data made it possible to properly calibrate the sensors for flight. Such data also provided a more accurate error prediction than the manufacturer's specification. This predictive accuracy increased confidence in the sensor output during critical phases of the flight. This paper presents the findings of this laboratory test. Ennix, Kimberly A. and Corpening, Griffin P. and Jarvis, Michele and Chiles, Harry R. Armstrong Flight Research Center NASA/TM-1999-206589, NAS 1.15:206589, H-2377
International Aerospace Abstracts
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1016
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1016
Book Description
AIAA Journal
Author: American Institute of Aeronautics and Astronautics
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1252
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1252
Book Description
NASA's Contributions to Aeronautics: Flight environment, operations, flight testing, and research
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1064
Book Description
Two-volume collection of case studies on aspects of NACA-NASA research by noted engineers, airmen, historians, museum curators, journalists, and independent scholars. Explores various aspects of how NACA-NASA research took aeronautics from the subsonic to the hypersonic era.-publisher description.
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1064
Book Description
Two-volume collection of case studies on aspects of NACA-NASA research by noted engineers, airmen, historians, museum curators, journalists, and independent scholars. Explores various aspects of how NACA-NASA research took aeronautics from the subsonic to the hypersonic era.-publisher description.
NASA's Contributions to Aeronautics, Volume 2, Flight Environment ..., NASA/SP-2010-570-Vol 2, 2010, *
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 1070
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 1070
Book Description
From Archangel to Senior Crown
Author: Peter W. Merlin
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN:
Category : History
Languages : en
Pages : 240
Book Description
The Lockheed Blackbirds hold a unique place in the development of aeronautics. In their day, the A-12, YF-12, M-21, D-21, and SR-71 variants outperformed all other jet airplanes in terms of altitude and speed. Now retired, they remain the only production aircraft capable of sustained Mach 3 cruise and operational altitudes above 80,000 feet.This is the first book to address the technical aspects of these incredible aircraft. The author describes the design evolution of the Blackbird, from the Archangel to the Senior Crown (the Air Force's SR-71.) He describes in detail the construction and materials challenges faced by Lockheed, as well as the Blackbird's performance characteristics and capabilities.A NASA historian, the author describes NASA's role in using the aircraft as a flying laboratory to collect data on materials, structures, loads, heating, aerodynamics, and performance for high-speed aircraft. The reader will benefit from the technical and programmatic lessons learned.This volume was produced in cooperation with the National Aeronautics and Space Administration.
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
ISBN:
Category : History
Languages : en
Pages : 240
Book Description
The Lockheed Blackbirds hold a unique place in the development of aeronautics. In their day, the A-12, YF-12, M-21, D-21, and SR-71 variants outperformed all other jet airplanes in terms of altitude and speed. Now retired, they remain the only production aircraft capable of sustained Mach 3 cruise and operational altitudes above 80,000 feet.This is the first book to address the technical aspects of these incredible aircraft. The author describes the design evolution of the Blackbird, from the Archangel to the Senior Crown (the Air Force's SR-71.) He describes in detail the construction and materials challenges faced by Lockheed, as well as the Blackbird's performance characteristics and capabilities.A NASA historian, the author describes NASA's role in using the aircraft as a flying laboratory to collect data on materials, structures, loads, heating, aerodynamics, and performance for high-speed aircraft. The reader will benefit from the technical and programmatic lessons learned.This volume was produced in cooperation with the National Aeronautics and Space Administration.
Flight Stability and Control and Performance Results from the Linear Aerospike SR-71 Experiment (LASRE)
Author: Timothy R. Moes
Publisher:
ISBN:
Category : Rocket engines
Languages : en
Pages : 34
Book Description
Publisher:
ISBN:
Category : Rocket engines
Languages : en
Pages : 34
Book Description