Author: Yu.V. Prokhorov
Publisher: Springer Science & Business Media
ISBN: 3662041723
Category : Mathematics
Languages : en
Pages : 280
Book Description
A collection of research level surveys on certain topics in probability theory by a well-known group of researchers. The book will be of interest to graduate students and researchers.
Limit Theorems of Probability Theory
Author: Yu.V. Prokhorov
Publisher: Springer Science & Business Media
ISBN: 3662041723
Category : Mathematics
Languages : en
Pages : 280
Book Description
A collection of research level surveys on certain topics in probability theory by a well-known group of researchers. The book will be of interest to graduate students and researchers.
Publisher: Springer Science & Business Media
ISBN: 3662041723
Category : Mathematics
Languages : en
Pages : 280
Book Description
A collection of research level surveys on certain topics in probability theory by a well-known group of researchers. The book will be of interest to graduate students and researchers.
A History of the Central Limit Theorem
Author: Hans Fischer
Publisher: Springer Science & Business Media
ISBN: 0387878572
Category : Mathematics
Languages : en
Pages : 415
Book Description
This study discusses the history of the central limit theorem and related probabilistic limit theorems from about 1810 through 1950. In this context the book also describes the historical development of analytical probability theory and its tools, such as characteristic functions or moments. The central limit theorem was originally deduced by Laplace as a statement about approximations for the distributions of sums of independent random variables within the framework of classical probability, which focused upon specific problems and applications. Making this theorem an autonomous mathematical object was very important for the development of modern probability theory.
Publisher: Springer Science & Business Media
ISBN: 0387878572
Category : Mathematics
Languages : en
Pages : 415
Book Description
This study discusses the history of the central limit theorem and related probabilistic limit theorems from about 1810 through 1950. In this context the book also describes the historical development of analytical probability theory and its tools, such as characteristic functions or moments. The central limit theorem was originally deduced by Laplace as a statement about approximations for the distributions of sums of independent random variables within the framework of classical probability, which focused upon specific problems and applications. Making this theorem an autonomous mathematical object was very important for the development of modern probability theory.
Heads or Tails
Author: Emmanuel Lesigne
Publisher: American Mathematical Soc.
ISBN: 0821837141
Category : Mathematics
Languages : en
Pages : 162
Book Description
Everyone knows some of the basics of probability, perhaps enough to play cards. Beyond the introductory ideas, there are many wonderful results that are unfamiliar to the layman, but which are well within our grasp to understand and appreciate. Some of the most remarkable results in probability are those that are related to limit theorems--statements about what happens when the trial is repeated many times. The most famous of these is the Law of Large Numbers, which mathematicians,engineers, economists, and many others use every day. In this book, Lesigne has made these limit theorems accessible by stating everything in terms of a game of tossing of a coin: heads or tails. In this way, the analysis becomes much clearer, helping establish the reader's intuition aboutprobability. Moreover, very little generality is lost, as many situations can be modelled from combinations of coin tosses. This book is suitable for anyone who would like to learn more about mathematical probability and has had a one-year undergraduate course in analysis.
Publisher: American Mathematical Soc.
ISBN: 0821837141
Category : Mathematics
Languages : en
Pages : 162
Book Description
Everyone knows some of the basics of probability, perhaps enough to play cards. Beyond the introductory ideas, there are many wonderful results that are unfamiliar to the layman, but which are well within our grasp to understand and appreciate. Some of the most remarkable results in probability are those that are related to limit theorems--statements about what happens when the trial is repeated many times. The most famous of these is the Law of Large Numbers, which mathematicians,engineers, economists, and many others use every day. In this book, Lesigne has made these limit theorems accessible by stating everything in terms of a game of tossing of a coin: heads or tails. In this way, the analysis becomes much clearer, helping establish the reader's intuition aboutprobability. Moreover, very little generality is lost, as many situations can be modelled from combinations of coin tosses. This book is suitable for anyone who would like to learn more about mathematical probability and has had a one-year undergraduate course in analysis.
Probability: The Classical Limit Theorems
Author: Henry McKean
Publisher: Cambridge University Press
ISBN: 1107053218
Category : Computers
Languages : en
Pages : 487
Book Description
A leading authority sheds light on a variety of interesting topics in which probability theory plays a key role.
Publisher: Cambridge University Press
ISBN: 1107053218
Category : Computers
Languages : en
Pages : 487
Book Description
A leading authority sheds light on a variety of interesting topics in which probability theory plays a key role.
Mathematical Statistics and Limit Theorems
Author: Marc Hallin
Publisher: Springer
ISBN: 3319124420
Category : Mathematics
Languages : en
Pages : 326
Book Description
This Festschrift in honour of Paul Deheuvels’ 65th birthday compiles recent research results in the area between mathematical statistics and probability theory with a special emphasis on limit theorems. The book brings together contributions from invited international experts to provide an up-to-date survey of the field. Written in textbook style, this collection of original material addresses researchers, PhD and advanced Master students with a solid grasp of mathematical statistics and probability theory.
Publisher: Springer
ISBN: 3319124420
Category : Mathematics
Languages : en
Pages : 326
Book Description
This Festschrift in honour of Paul Deheuvels’ 65th birthday compiles recent research results in the area between mathematical statistics and probability theory with a special emphasis on limit theorems. The book brings together contributions from invited international experts to provide an up-to-date survey of the field. Written in textbook style, this collection of original material addresses researchers, PhD and advanced Master students with a solid grasp of mathematical statistics and probability theory.
Probability
Author: Rick Durrett
Publisher: Cambridge University Press
ISBN: 113949113X
Category : Mathematics
Languages : en
Pages :
Book Description
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Publisher: Cambridge University Press
ISBN: 113949113X
Category : Mathematics
Languages : en
Pages :
Book Description
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Martingale Limit Theory and Its Application
Author: P. Hall
Publisher: Academic Press
ISBN: 1483263223
Category : Mathematics
Languages : en
Pages : 321
Book Description
Martingale Limit Theory and Its Application discusses the asymptotic properties of martingales, particularly as regards key prototype of probabilistic behavior that has wide applications. The book explains the thesis that martingale theory is central to probability theory, and also examines the relationships between martingales and processes embeddable in or approximated by Brownian motion. The text reviews the martingale convergence theorem, the classical limit theory and analogs, and the martingale limit theorems viewed as the rate of convergence results in the martingale convergence theorem. The book explains the square function inequalities, weak law of large numbers, as well as the strong law of large numbers. The text discusses the reverse martingales, martingale tail sums, the invariance principles in the central limit theorem, and also the law of the iterated logarithm. The book investigates the limit theory for stationary processes via corresponding results for approximating martingales and the estimation of parameters from stochastic processes. The text can be profitably used as a reference for mathematicians, advanced students, and professors of higher mathematics or statistics.
Publisher: Academic Press
ISBN: 1483263223
Category : Mathematics
Languages : en
Pages : 321
Book Description
Martingale Limit Theory and Its Application discusses the asymptotic properties of martingales, particularly as regards key prototype of probabilistic behavior that has wide applications. The book explains the thesis that martingale theory is central to probability theory, and also examines the relationships between martingales and processes embeddable in or approximated by Brownian motion. The text reviews the martingale convergence theorem, the classical limit theory and analogs, and the martingale limit theorems viewed as the rate of convergence results in the martingale convergence theorem. The book explains the square function inequalities, weak law of large numbers, as well as the strong law of large numbers. The text discusses the reverse martingales, martingale tail sums, the invariance principles in the central limit theorem, and also the law of the iterated logarithm. The book investigates the limit theory for stationary processes via corresponding results for approximating martingales and the estimation of parameters from stochastic processes. The text can be profitably used as a reference for mathematicians, advanced students, and professors of higher mathematics or statistics.
Limit Theorems for Randomly Stopped Stochastic Processes
Author: Dmitriĭ Sergeevich Silʹvestrov
Publisher: Springer Science & Business Media
ISBN: 9781852337773
Category : Mathematics
Languages : en
Pages : 426
Book Description
Limit theorems for stochastic processes are an important part of probability theory and mathematical statistics and one model that has attracted the attention of many researchers working in the area is that of limit theorems for randomly stopped stochastic processes.This volume is the first to present a state-of-the-art overview of this field, with many of the results published for the first time. It covers the general conditions as well as the basic applications of the theory, and it covers and demystifies the vast, and technically demanding, Russian literature in detail. A survey of the literature and an extended bibliography of works in the area are also provided.The coverage is thorough, streamlined and arranged according to difficulty for use as an upper-level text if required. It is an essential reference for theoretical and applied researchers in the fields of probability and statistics that will contribute to the continuing extensive studies in the area and remain relevant for years to come.
Publisher: Springer Science & Business Media
ISBN: 9781852337773
Category : Mathematics
Languages : en
Pages : 426
Book Description
Limit theorems for stochastic processes are an important part of probability theory and mathematical statistics and one model that has attracted the attention of many researchers working in the area is that of limit theorems for randomly stopped stochastic processes.This volume is the first to present a state-of-the-art overview of this field, with many of the results published for the first time. It covers the general conditions as well as the basic applications of the theory, and it covers and demystifies the vast, and technically demanding, Russian literature in detail. A survey of the literature and an extended bibliography of works in the area are also provided.The coverage is thorough, streamlined and arranged according to difficulty for use as an upper-level text if required. It is an essential reference for theoretical and applied researchers in the fields of probability and statistics that will contribute to the continuing extensive studies in the area and remain relevant for years to come.
Stopped Random Walks
Author: Allan Gut
Publisher: Springer Science & Business Media
ISBN: 1475719922
Category : Mathematics
Languages : en
Pages : 208
Book Description
My first encounter with renewal theory and its extensions was in 1967/68 when I took a course in probability theory and stochastic processes, where the then recent book Stochastic Processes by Professor N.D. Prabhu was one of the requirements. Later, my teacher, Professor Carl-Gustav Esseen, gave me some problems in this area for a possible thesis, the result of which was Gut (1974a). Over the years I have, on and off, continued research in this field. During this time it has become clear that many limit theorems can be obtained with the aid of limit theorems for random walks indexed by families of positive, integer valued random variables, typically by families of stopping times. During the spring semester of 1984 Professor Prabhu visited Uppsala and very soon got me started on a book focusing on this aspect. I wish to thank him for getting me into this project, for his advice and suggestions, as well as his kindness and hospitality during my stay at Cornell in the spring of 1985. Throughout the writing of this book I have had immense help and support from Svante Janson. He has not only read, but scrutinized, every word and every formula of this and earlier versions of the manuscript. My gratitude to him for all the errors he found, for his perspicacious suggestions and remarks and, above all, for what his unusual personal as well as scientific generosity has meant to me cannot be expressed in words.
Publisher: Springer Science & Business Media
ISBN: 1475719922
Category : Mathematics
Languages : en
Pages : 208
Book Description
My first encounter with renewal theory and its extensions was in 1967/68 when I took a course in probability theory and stochastic processes, where the then recent book Stochastic Processes by Professor N.D. Prabhu was one of the requirements. Later, my teacher, Professor Carl-Gustav Esseen, gave me some problems in this area for a possible thesis, the result of which was Gut (1974a). Over the years I have, on and off, continued research in this field. During this time it has become clear that many limit theorems can be obtained with the aid of limit theorems for random walks indexed by families of positive, integer valued random variables, typically by families of stopping times. During the spring semester of 1984 Professor Prabhu visited Uppsala and very soon got me started on a book focusing on this aspect. I wish to thank him for getting me into this project, for his advice and suggestions, as well as his kindness and hospitality during my stay at Cornell in the spring of 1985. Throughout the writing of this book I have had immense help and support from Svante Janson. He has not only read, but scrutinized, every word and every formula of this and earlier versions of the manuscript. My gratitude to him for all the errors he found, for his perspicacious suggestions and remarks and, above all, for what his unusual personal as well as scientific generosity has meant to me cannot be expressed in words.
Probability Theory
Author: I︠U︡riĭ Vasilʹevich Prokhorov
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 434
Book Description
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 434
Book Description