Author: Robert V. Moody
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 760
Book Description
Imparts a self-contained development of the algebraic theory of Kac-Moody algebras, their representations and close relatives--the Virasoro and Heisenberg algebras. Focuses on developing the theory of triangular decompositions and part of the Kac-Moody theory not specific to the affine case. Also covers lattices, and finite root systems, infinite-dimensional theory, Weyl groups and conjugacy theorems.
Lie Algebras with Triangular Decompositions
Author: Robert V. Moody
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 760
Book Description
Imparts a self-contained development of the algebraic theory of Kac-Moody algebras, their representations and close relatives--the Virasoro and Heisenberg algebras. Focuses on developing the theory of triangular decompositions and part of the Kac-Moody theory not specific to the affine case. Also covers lattices, and finite root systems, infinite-dimensional theory, Weyl groups and conjugacy theorems.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 760
Book Description
Imparts a self-contained development of the algebraic theory of Kac-Moody algebras, their representations and close relatives--the Virasoro and Heisenberg algebras. Focuses on developing the theory of triangular decompositions and part of the Kac-Moody theory not specific to the affine case. Also covers lattices, and finite root systems, infinite-dimensional theory, Weyl groups and conjugacy theorems.
Highlights in Lie Algebraic Methods
Author: Anthony Joseph
Publisher: Springer Science & Business Media
ISBN: 0817682740
Category : Mathematics
Languages : en
Pages : 236
Book Description
This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac–Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac–Moody superalgebras, categories of Harish–Chandra modules, cohomological methods, and cluster algebras.
Publisher: Springer Science & Business Media
ISBN: 0817682740
Category : Mathematics
Languages : en
Pages : 236
Book Description
This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac–Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac–Moody superalgebras, categories of Harish–Chandra modules, cohomological methods, and cluster algebras.
Quantum Mechanics via Lie Algebras
Author: Arnold Neumaier
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110406209
Category : Science
Languages : en
Pages : 504
Book Description
This monograph introduces mathematicians, physicists, and engineers to the ideas relating quantum mechanics and symmetries - both described in terms of Lie algebras and Lie groups. The exposition of quantum mechanics from this point of view reveals that classical mechanics and quantum mechanics are very much alike. Written by a mathematician and a physicist, this book is (like a math book) about precise concepts and exact results in classical mechanics and quantum mechanics, but motivated and discussed (like a physics book) in terms of their physical meaning. The reader can focus on the simplicity and beauty of theoretical physics, without getting lost in a jungle of techniques for estimating or calculating quantities of interest.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110406209
Category : Science
Languages : en
Pages : 504
Book Description
This monograph introduces mathematicians, physicists, and engineers to the ideas relating quantum mechanics and symmetries - both described in terms of Lie algebras and Lie groups. The exposition of quantum mechanics from this point of view reveals that classical mechanics and quantum mechanics are very much alike. Written by a mathematician and a physicist, this book is (like a math book) about precise concepts and exact results in classical mechanics and quantum mechanics, but motivated and discussed (like a physics book) in terms of their physical meaning. The reader can focus on the simplicity and beauty of theoretical physics, without getting lost in a jungle of techniques for estimating or calculating quantities of interest.
Encyclopaedia of Mathematics
Author: Michiel Hazewinkel
Publisher: Springer Science & Business Media
ISBN: 9781556080036
Category : Mathematics
Languages : en
Pages : 540
Book Description
V.1. A-B v.2. C v.3. D-Feynman Measure. v.4. Fibonaccimethod H v.5. Lituus v.6. Lobachevskii Criterion (for Convergence)-Optical Sigman-Algebra. v.7. Orbi t-Rayleigh Equation. v.8. Reaction-Diffusion Equation-Stirling Interpolation Fo rmula. v.9. Stochastic Approximation-Zygmund Class of Functions. v.10. Subject Index-Author Index.
Publisher: Springer Science & Business Media
ISBN: 9781556080036
Category : Mathematics
Languages : en
Pages : 540
Book Description
V.1. A-B v.2. C v.3. D-Feynman Measure. v.4. Fibonaccimethod H v.5. Lituus v.6. Lobachevskii Criterion (for Convergence)-Optical Sigman-Algebra. v.7. Orbi t-Rayleigh Equation. v.8. Reaction-Diffusion Equation-Stirling Interpolation Fo rmula. v.9. Stochastic Approximation-Zygmund Class of Functions. v.10. Subject Index-Author Index.
Lie Superalgebras and Enveloping Algebras
Author: Ian Malcolm Musson
Publisher: American Mathematical Soc.
ISBN: 0821868675
Category : Mathematics
Languages : en
Pages : 512
Book Description
Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. This book develops the theory of Lie superalgebras, their enveloping algebras, and their representations. The book begins with five chapters on the basic properties of Lie superalgebras, including explicit constructions for all the classical simple Lie superalgebras. Borel subalgebras, which are more subtle in this setting, are studied and described. Contragredient Lie superalgebras are introduced, allowing a unified approach to several results, in particular to the existence of an invariant bilinear form on $\mathfrak{g}$. The enveloping algebra of a finite dimensional Lie superalgebra is studied as an extension of the enveloping algebra of the even part of the superalgebra. By developing general methods for studying such extensions, important information on the algebraic structure is obtained, particularly with regard to primitive ideals. Fundamental results, such as the Poincare-Birkhoff-Witt Theorem, are established. Representations of Lie superalgebras provide valuable tools for understanding the algebras themselves, as well as being of primary interest in applications to other fields. Two important classes of representations are the Verma modules and the finite dimensional representations. The fundamental results here include the Jantzen filtration, the Harish-Chandra homomorphism, the Sapovalov determinant, supersymmetric polynomials, and Schur-Weyl duality. Using these tools, the center can be explicitly described in the general linear and orthosymplectic cases. In an effort to make the presentation as self-contained as possible, some background material is included on Lie theory, ring theory, Hopf algebras, and combinatorics.
Publisher: American Mathematical Soc.
ISBN: 0821868675
Category : Mathematics
Languages : en
Pages : 512
Book Description
Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. This book develops the theory of Lie superalgebras, their enveloping algebras, and their representations. The book begins with five chapters on the basic properties of Lie superalgebras, including explicit constructions for all the classical simple Lie superalgebras. Borel subalgebras, which are more subtle in this setting, are studied and described. Contragredient Lie superalgebras are introduced, allowing a unified approach to several results, in particular to the existence of an invariant bilinear form on $\mathfrak{g}$. The enveloping algebra of a finite dimensional Lie superalgebra is studied as an extension of the enveloping algebra of the even part of the superalgebra. By developing general methods for studying such extensions, important information on the algebraic structure is obtained, particularly with regard to primitive ideals. Fundamental results, such as the Poincare-Birkhoff-Witt Theorem, are established. Representations of Lie superalgebras provide valuable tools for understanding the algebras themselves, as well as being of primary interest in applications to other fields. Two important classes of representations are the Verma modules and the finite dimensional representations. The fundamental results here include the Jantzen filtration, the Harish-Chandra homomorphism, the Sapovalov determinant, supersymmetric polynomials, and Schur-Weyl duality. Using these tools, the center can be explicitly described in the general linear and orthosymplectic cases. In an effort to make the presentation as self-contained as possible, some background material is included on Lie theory, ring theory, Hopf algebras, and combinatorics.
Lie Groups and Lie Algebras III
Author: A.L. Onishchik
Publisher: Springer Science & Business Media
ISBN: 9783540546832
Category : Mathematics
Languages : en
Pages : 264
Book Description
A comprehensive and modern account of the structure and classification of Lie groups and finite-dimensional Lie algebras, by internationally known specialists in the field. This Encyclopaedia volume will be immensely useful to graduate students in differential geometry, algebra and theoretical physics.
Publisher: Springer Science & Business Media
ISBN: 9783540546832
Category : Mathematics
Languages : en
Pages : 264
Book Description
A comprehensive and modern account of the structure and classification of Lie groups and finite-dimensional Lie algebras, by internationally known specialists in the field. This Encyclopaedia volume will be immensely useful to graduate students in differential geometry, algebra and theoretical physics.
Projective Modules over Lie Algebras of Cartan Type
Author: Daniel Ken Nakano
Publisher: American Mathematical Soc.
ISBN: 0821825305
Category : Mathematics
Languages : en
Pages : 97
Book Description
This paper investigates the question of linkage and block theory for Lie algebras of Cartan type. The second part of the paper deals mainly with block structure and projective modules of Lies algebras of types W and K.
Publisher: American Mathematical Soc.
ISBN: 0821825305
Category : Mathematics
Languages : en
Pages : 97
Book Description
This paper investigates the question of linkage and block theory for Lie algebras of Cartan type. The second part of the paper deals mainly with block structure and projective modules of Lies algebras of types W and K.
Yangians and Classical Lie Algebras
Author: Alexander Molev
Publisher: American Mathematical Soc.
ISBN: 0821843745
Category : Mathematics
Languages : en
Pages : 422
Book Description
The Yangians and twisted Yangians are remarkable associative algebras taking their origins from the work of St. Petersburg's school of mathematical physics in the 1980s. This book is an introduction to the theory of Yangians and twisted Yangians, with a particular emphasis on the relationship with the classical matrix Lie algebras.
Publisher: American Mathematical Soc.
ISBN: 0821843745
Category : Mathematics
Languages : en
Pages : 422
Book Description
The Yangians and twisted Yangians are remarkable associative algebras taking their origins from the work of St. Petersburg's school of mathematical physics in the 1980s. This book is an introduction to the theory of Yangians and twisted Yangians, with a particular emphasis on the relationship with the classical matrix Lie algebras.
Notes on Lie Algebras
Author: Hans Samelson
Publisher: Springer Science & Business Media
ISBN: 1461390141
Category : Mathematics
Languages : en
Pages : 172
Book Description
(Cartan sub Lie algebra, roots, Weyl group, Dynkin diagram, . . . ) and the classification, as found by Killing and Cartan (the list of all semisimple Lie algebras consists of (1) the special- linear ones, i. e. all matrices (of any fixed dimension) with trace 0, (2) the orthogonal ones, i. e. all skewsymmetric ma trices (of any fixed dimension), (3) the symplectic ones, i. e. all matrices M (of any fixed even dimension) that satisfy M J = - J MT with a certain non-degenerate skewsymmetric matrix J, and (4) five special Lie algebras G2, F , E , E , E , of dimensions 14,52,78,133,248, the "exceptional Lie 4 6 7 s algebras" , that just somehow appear in the process). There is also a discus sion of the compact form and other real forms of a (complex) semisimple Lie algebra, and a section on automorphisms. The third chapter brings the theory of the finite dimensional representations of a semisimple Lie alge bra, with the highest or extreme weight as central notion. The proof for the existence of representations is an ad hoc version of the present standard proof, but avoids explicit use of the Poincare-Birkhoff-Witt theorem. Complete reducibility is proved, as usual, with J. H. C. Whitehead's proof (the first proof, by H. Weyl, was analytical-topological and used the exis tence of a compact form of the group in question). Then come H.
Publisher: Springer Science & Business Media
ISBN: 1461390141
Category : Mathematics
Languages : en
Pages : 172
Book Description
(Cartan sub Lie algebra, roots, Weyl group, Dynkin diagram, . . . ) and the classification, as found by Killing and Cartan (the list of all semisimple Lie algebras consists of (1) the special- linear ones, i. e. all matrices (of any fixed dimension) with trace 0, (2) the orthogonal ones, i. e. all skewsymmetric ma trices (of any fixed dimension), (3) the symplectic ones, i. e. all matrices M (of any fixed even dimension) that satisfy M J = - J MT with a certain non-degenerate skewsymmetric matrix J, and (4) five special Lie algebras G2, F , E , E , E , of dimensions 14,52,78,133,248, the "exceptional Lie 4 6 7 s algebras" , that just somehow appear in the process). There is also a discus sion of the compact form and other real forms of a (complex) semisimple Lie algebra, and a section on automorphisms. The third chapter brings the theory of the finite dimensional representations of a semisimple Lie alge bra, with the highest or extreme weight as central notion. The proof for the existence of representations is an ad hoc version of the present standard proof, but avoids explicit use of the Poincare-Birkhoff-Witt theorem. Complete reducibility is proved, as usual, with J. H. C. Whitehead's proof (the first proof, by H. Weyl, was analytical-topological and used the exis tence of a compact form of the group in question). Then come H.
Representations of Semisimple Lie Algebras in the BGG Category O
Author: James E. Humphreys
Publisher: American Mathematical Soc.
ISBN: 1470463261
Category : Education
Languages : en
Pages : 289
Book Description
This is the first textbook treatment of work leading to the landmark 1979 Kazhdan–Lusztig Conjecture on characters of simple highest weight modules for a semisimple Lie algebra g g over C C. The setting is the module category O O introduced by Bernstein–Gelfand–Gelfand, which includes all highest weight modules for g g such as Verma modules and finite dimensional simple modules. Analogues of this category have become influential in many areas of representation theory. Part I can be used as a text for independent study or for a mid-level one semester graduate course; it includes exercises and examples. The main prerequisite is familiarity with the structure theory of g g. Basic techniques in category O O such as BGG Reciprocity and Jantzen's translation functors are developed, culminating in an overview of the proof of the Kazhdan–Lusztig Conjecture (due to Beilinson–Bernstein and Brylinski–Kashiwara). The full proof however is beyond the scope of this book, requiring deep geometric methods: D D-modules and perverse sheaves on the flag variety. Part II introduces closely related topics important in current research: parabolic category O O, projective functors, tilting modules, twisting and completion functors, and Koszul duality theorem of Beilinson–Ginzburg–Soergel.
Publisher: American Mathematical Soc.
ISBN: 1470463261
Category : Education
Languages : en
Pages : 289
Book Description
This is the first textbook treatment of work leading to the landmark 1979 Kazhdan–Lusztig Conjecture on characters of simple highest weight modules for a semisimple Lie algebra g g over C C. The setting is the module category O O introduced by Bernstein–Gelfand–Gelfand, which includes all highest weight modules for g g such as Verma modules and finite dimensional simple modules. Analogues of this category have become influential in many areas of representation theory. Part I can be used as a text for independent study or for a mid-level one semester graduate course; it includes exercises and examples. The main prerequisite is familiarity with the structure theory of g g. Basic techniques in category O O such as BGG Reciprocity and Jantzen's translation functors are developed, culminating in an overview of the proof of the Kazhdan–Lusztig Conjecture (due to Beilinson–Bernstein and Brylinski–Kashiwara). The full proof however is beyond the scope of this book, requiring deep geometric methods: D D-modules and perverse sheaves on the flag variety. Part II introduces closely related topics important in current research: parabolic category O O, projective functors, tilting modules, twisting and completion functors, and Koszul duality theorem of Beilinson–Ginzburg–Soergel.