Author: Albert W Stetz
Publisher: World Scientific Publishing Company
ISBN: 9813141379
Category : Science
Languages : en
Pages : 141
Book Description
This elegant book presents a rigorous introduction to the theory of nonlinear mechanics and chaos. It turns out that many simple mechanical systems suffer from a peculiar malady. They are deterministic in the sense that their motion can be described with partial differential equations, but these equations have no proper solutions and the behavior they describe can be wildly unpredictable. This is implicit in Newtonian physics, and although it was analyzed in the pioneering work of Poincaré in the 19th century, its full significance has only been realized since the advent of modern computing. This book follows this development in the context of classical mechanics as it is usually taught in most graduate programs in physics. It starts with the seminal work of Laplace, Hamilton, and Liouville in the early 19th century and shows how their formulation of mechanics inevitably leads to systems that cannot be 'solved' in the usual sense of the word. It then discusses perturbation theory which, rather than providing approximate solutions, fails catastrophically due to the problem of small denominators. It then goes on to describe chaotic motion using the tools of discrete maps and Poincaré sections. This leads to the two great landmarks of chaos theory, the Poincaré-Birkhoff theorem and the so-called KAM theorem, one of the signal results in modern mathematics. The book concludes with an appendix discussing the relevance of the KAM theorem to the ergodic hypothesis and the second law of thermodynamics.Lectures on Nonlinear Mechanics and Chaos Theory is written in the easy conversational style of a great teacher. It features numerous computer-drawn figures illustrating the behavior of nonlinear systems. It also contains homework exercises and a selection of more detailed computational projects. The book will be valuable to students and faculty in physics, mathematics, and engineering.
Lectures On Nonlinear Mechanics And Chaos Theory
Author: Albert W Stetz
Publisher: World Scientific Publishing Company
ISBN: 9813141379
Category : Science
Languages : en
Pages : 141
Book Description
This elegant book presents a rigorous introduction to the theory of nonlinear mechanics and chaos. It turns out that many simple mechanical systems suffer from a peculiar malady. They are deterministic in the sense that their motion can be described with partial differential equations, but these equations have no proper solutions and the behavior they describe can be wildly unpredictable. This is implicit in Newtonian physics, and although it was analyzed in the pioneering work of Poincaré in the 19th century, its full significance has only been realized since the advent of modern computing. This book follows this development in the context of classical mechanics as it is usually taught in most graduate programs in physics. It starts with the seminal work of Laplace, Hamilton, and Liouville in the early 19th century and shows how their formulation of mechanics inevitably leads to systems that cannot be 'solved' in the usual sense of the word. It then discusses perturbation theory which, rather than providing approximate solutions, fails catastrophically due to the problem of small denominators. It then goes on to describe chaotic motion using the tools of discrete maps and Poincaré sections. This leads to the two great landmarks of chaos theory, the Poincaré-Birkhoff theorem and the so-called KAM theorem, one of the signal results in modern mathematics. The book concludes with an appendix discussing the relevance of the KAM theorem to the ergodic hypothesis and the second law of thermodynamics.Lectures on Nonlinear Mechanics and Chaos Theory is written in the easy conversational style of a great teacher. It features numerous computer-drawn figures illustrating the behavior of nonlinear systems. It also contains homework exercises and a selection of more detailed computational projects. The book will be valuable to students and faculty in physics, mathematics, and engineering.
Publisher: World Scientific Publishing Company
ISBN: 9813141379
Category : Science
Languages : en
Pages : 141
Book Description
This elegant book presents a rigorous introduction to the theory of nonlinear mechanics and chaos. It turns out that many simple mechanical systems suffer from a peculiar malady. They are deterministic in the sense that their motion can be described with partial differential equations, but these equations have no proper solutions and the behavior they describe can be wildly unpredictable. This is implicit in Newtonian physics, and although it was analyzed in the pioneering work of Poincaré in the 19th century, its full significance has only been realized since the advent of modern computing. This book follows this development in the context of classical mechanics as it is usually taught in most graduate programs in physics. It starts with the seminal work of Laplace, Hamilton, and Liouville in the early 19th century and shows how their formulation of mechanics inevitably leads to systems that cannot be 'solved' in the usual sense of the word. It then discusses perturbation theory which, rather than providing approximate solutions, fails catastrophically due to the problem of small denominators. It then goes on to describe chaotic motion using the tools of discrete maps and Poincaré sections. This leads to the two great landmarks of chaos theory, the Poincaré-Birkhoff theorem and the so-called KAM theorem, one of the signal results in modern mathematics. The book concludes with an appendix discussing the relevance of the KAM theorem to the ergodic hypothesis and the second law of thermodynamics.Lectures on Nonlinear Mechanics and Chaos Theory is written in the easy conversational style of a great teacher. It features numerous computer-drawn figures illustrating the behavior of nonlinear systems. It also contains homework exercises and a selection of more detailed computational projects. The book will be valuable to students and faculty in physics, mathematics, and engineering.
Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Nonlinear Dynamics and Quantum Chaos
Author: Sandro Wimberger
Publisher: Springer
ISBN: 331906343X
Category : Science
Languages : en
Pages : 215
Book Description
The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.
Publisher: Springer
ISBN: 331906343X
Category : Science
Languages : en
Pages : 215
Book Description
The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.
Lectures in Nonlinear Mechanics and Chaos Theory
Author: Albert W. Stetz
Publisher:
ISBN: 9789813141360
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9789813141360
Category :
Languages : en
Pages :
Book Description
Introduction To Nonlinear Dynamics For Physicists
Author: Henry D I Abarbanel
Publisher: World Scientific
ISBN: 9814504122
Category : Science
Languages : en
Pages : 170
Book Description
This series of lectures aims to address three main questions that anyone interested in the study of nonlinear dynamics should ask and ponder over. What is nonlinear dynamics and how does it differ from linear dynamics which permeates all familiar textbooks? Why should the physicist study nonlinear systems and leave the comfortable territory of linearity? How can one progress in the study of nonlinear systems both in the analysis of these systems and in learning about new systems from observing their experimental behavior? While it is impossible to answer these questions in the finest detail, this series of lectures nonetheless successfully points the way for the interested reader. Other useful problems have also been incorporated as a study guide. By presenting both substantial qualitative information about phenomena in nonlinear systems and at the same time sufficient quantitative material, the author hopes that readers would learn how to progress on their own in the study of such similar material hereon.
Publisher: World Scientific
ISBN: 9814504122
Category : Science
Languages : en
Pages : 170
Book Description
This series of lectures aims to address three main questions that anyone interested in the study of nonlinear dynamics should ask and ponder over. What is nonlinear dynamics and how does it differ from linear dynamics which permeates all familiar textbooks? Why should the physicist study nonlinear systems and leave the comfortable territory of linearity? How can one progress in the study of nonlinear systems both in the analysis of these systems and in learning about new systems from observing their experimental behavior? While it is impossible to answer these questions in the finest detail, this series of lectures nonetheless successfully points the way for the interested reader. Other useful problems have also been incorporated as a study guide. By presenting both substantial qualitative information about phenomena in nonlinear systems and at the same time sufficient quantitative material, the author hopes that readers would learn how to progress on their own in the study of such similar material hereon.
Introduction to Dynamics
Author: Ian Percival
Publisher: Cambridge University Press
ISBN: 9780521281492
Category : Mathematics
Languages : en
Pages : 242
Book Description
In this book, the subject of dynamics is introduced at undergraduate level through the elementary qualitative theory of differential equations, the geometry of phase curves and the theory of stability. The text is supplemented with over a hundred exercises.
Publisher: Cambridge University Press
ISBN: 9780521281492
Category : Mathematics
Languages : en
Pages : 242
Book Description
In this book, the subject of dynamics is introduced at undergraduate level through the elementary qualitative theory of differential equations, the geometry of phase curves and the theory of stability. The text is supplemented with over a hundred exercises.
Nonlinear Dynamics, Chaotic and Complex Systems
Author: Eryk Infeld
Publisher: Cambridge University Press
ISBN: 9780521582018
Category : Mathematics
Languages : en
Pages : 358
Book Description
The physics and mathematics of nonlinear dynamics, chaotic and complex systems constitute some of the most fascinating developments of late twentieth century science. It turns out that chaotic bahaviour can be understood, and even utilized, to a far greater degree than had been suspected. Surprisingly, universal constants have been discovered. The implications have changed our understanding of important phenomena in physics, biology, chemistry, economics, medicine and numerous other fields of human endeavor. In this book, two dozen scientists and mathematicians who were deeply involved in the "nonlinear revolution" cover most of the basic aspects of the field.
Publisher: Cambridge University Press
ISBN: 9780521582018
Category : Mathematics
Languages : en
Pages : 358
Book Description
The physics and mathematics of nonlinear dynamics, chaotic and complex systems constitute some of the most fascinating developments of late twentieth century science. It turns out that chaotic bahaviour can be understood, and even utilized, to a far greater degree than had been suspected. Surprisingly, universal constants have been discovered. The implications have changed our understanding of important phenomena in physics, biology, chemistry, economics, medicine and numerous other fields of human endeavor. In this book, two dozen scientists and mathematicians who were deeply involved in the "nonlinear revolution" cover most of the basic aspects of the field.
An Introduction to Chaos in Nonequilibrium Statistical Mechanics
Author: J. R. Dorfman
Publisher: Cambridge University Press
ISBN: 0521655897
Category : Science
Languages : en
Pages : 303
Book Description
Introduction to applications and techniques in non-equilibrium statistical mechanics of chaotic dynamics.
Publisher: Cambridge University Press
ISBN: 0521655897
Category : Science
Languages : en
Pages : 303
Book Description
Introduction to applications and techniques in non-equilibrium statistical mechanics of chaotic dynamics.
The Physics of Phase Space
Author: Young S. Kim
Publisher: Springer
ISBN: 3540479015
Category : Science
Languages : en
Pages : 457
Book Description
The concept of phase space plays a decisive role in the study of the transition from classical to quantum physics. This is particularly the case in areas such as nonlinear dynamics and chaos, geometric quantization and the study of the various semi-classical theories, which are the setting of the present volume. Much of the content is devoted to the study of the Wigner distribution. This volume gives the first complete survey of the progress made by both mathematicians and physicists. It will serve as an excellent reference for further research.
Publisher: Springer
ISBN: 3540479015
Category : Science
Languages : en
Pages : 457
Book Description
The concept of phase space plays a decisive role in the study of the transition from classical to quantum physics. This is particularly the case in areas such as nonlinear dynamics and chaos, geometric quantization and the study of the various semi-classical theories, which are the setting of the present volume. Much of the content is devoted to the study of the Wigner distribution. This volume gives the first complete survey of the progress made by both mathematicians and physicists. It will serve as an excellent reference for further research.
Chaos
Author: Angelo Vulpiani
Publisher: World Scientific
ISBN: 9814277665
Category : Mathematics
Languages : en
Pages : 482
Book Description
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.
Publisher: World Scientific
ISBN: 9814277665
Category : Mathematics
Languages : en
Pages : 482
Book Description
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.