Author: Roger William Carter
Publisher:
ISBN: 9780521499224
Category : Mathematics
Languages : en
Pages : 190
Book Description
An excellent introduction to the theory of Lie groups and Lie algebras.
Lectures on Lie Groups and Lie Algebras
Author: Roger William Carter
Publisher:
ISBN: 9780521499224
Category : Mathematics
Languages : en
Pages : 190
Book Description
An excellent introduction to the theory of Lie groups and Lie algebras.
Publisher:
ISBN: 9780521499224
Category : Mathematics
Languages : en
Pages : 190
Book Description
An excellent introduction to the theory of Lie groups and Lie algebras.
Lectures on Lie Groups
Author: J. F. Adams
Publisher: University of Chicago Press
ISBN: 0226005305
Category : Mathematics
Languages : en
Pages : 192
Book Description
"[Lectures in Lie Groups] fulfills its aim admirably and should be a useful reference for any mathematician who would like to learn the basic results for compact Lie groups. . . . The book is a well written basic text [and Adams] has done a service to the mathematical community."—Irving Kaplansky
Publisher: University of Chicago Press
ISBN: 0226005305
Category : Mathematics
Languages : en
Pages : 192
Book Description
"[Lectures in Lie Groups] fulfills its aim admirably and should be a useful reference for any mathematician who would like to learn the basic results for compact Lie groups. . . . The book is a well written basic text [and Adams] has done a service to the mathematical community."—Irving Kaplansky
Lie Algebras and Lie Groups
Author: Jean-Pierre Serre
Publisher: Springer
ISBN: 3540706348
Category : Mathematics
Languages : en
Pages : 180
Book Description
The main general theorems on Lie Algebras are covered, roughly the content of Bourbaki's Chapter I.I have added some results on free Lie algebras, which are useful, both for Lie's theory itself (Campbell-Hausdorff formula) and for applications to pro-Jrgroups. of time prevented me from including the more precise theory of Lack semisimple Lie algebras (roots, weights, etc.); but, at least, I have given, as a last Chapter, the typical case ofal, . This part has been written with the help of F. Raggi and J. Tate. I want to thank them, and also Sue Golan, who did the typing for both parts. Jean-Pierre Serre Harvard, Fall 1964 Chapter I. Lie Algebras: Definition and Examples Let Ie be a commutativering with unit element, and let A be a k-module, then A is said to be a Ie-algebra if there is given a k-bilinear map A x A~ A (i.e., a k-homomorphism A0" A -+ A). As usual we may define left, right and two-sided ideals and therefore quo tients. Definition 1. A Lie algebra over Ie isan algebrawith the following properties: 1). The map A0i A -+ A admits a factorization A ®i A -+ A2A -+ A i.e., ifwe denote the imageof(x, y) under this map by [x, y) then the condition becomes for all x e k. [x, x)=0 2). (lx, II], z]+ny, z), x) + ([z, xl, til = 0 (Jacobi's identity) The condition 1) implies [x,1/]=-[1/, x).
Publisher: Springer
ISBN: 3540706348
Category : Mathematics
Languages : en
Pages : 180
Book Description
The main general theorems on Lie Algebras are covered, roughly the content of Bourbaki's Chapter I.I have added some results on free Lie algebras, which are useful, both for Lie's theory itself (Campbell-Hausdorff formula) and for applications to pro-Jrgroups. of time prevented me from including the more precise theory of Lack semisimple Lie algebras (roots, weights, etc.); but, at least, I have given, as a last Chapter, the typical case ofal, . This part has been written with the help of F. Raggi and J. Tate. I want to thank them, and also Sue Golan, who did the typing for both parts. Jean-Pierre Serre Harvard, Fall 1964 Chapter I. Lie Algebras: Definition and Examples Let Ie be a commutativering with unit element, and let A be a k-module, then A is said to be a Ie-algebra if there is given a k-bilinear map A x A~ A (i.e., a k-homomorphism A0" A -+ A). As usual we may define left, right and two-sided ideals and therefore quo tients. Definition 1. A Lie algebra over Ie isan algebrawith the following properties: 1). The map A0i A -+ A admits a factorization A ®i A -+ A2A -+ A i.e., ifwe denote the imageof(x, y) under this map by [x, y) then the condition becomes for all x e k. [x, x)=0 2). (lx, II], z]+ny, z), x) + ([z, xl, til = 0 (Jacobi's identity) The condition 1) implies [x,1/]=-[1/, x).
An Introduction to Lie Groups and Lie Algebras
Author: Alexander A. Kirillov
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Lectures on Exceptional Lie Groups
Author: J. F. Adams
Publisher: University of Chicago Press
ISBN: 9780226005270
Category : Mathematics
Languages : en
Pages : 20
Book Description
J. Frank Adams was internationally known and respected as one of the great algebraic topologists. Adams had long been fascinated with exceptional Lie groups, about which he published several papers, and he gave a series of lectures on the topic. The author's detailed lecture notes have enabled volume editors Zafer Mahmud and Mamoru Mimura to preserve the substance and character of Adams's work. Because Lie groups form a staple of most mathematics graduate students' diets, this work on exceptional Lie groups should appeal to many of them, as well as to researchers of algebraic geometry and topology. J. Frank Adams was Lowndean professor of astronomy and geometry at the University of Cambridge. The University of Chicago Press published his Lectures on Lie Groups and has reprinted his Stable Homotopy and Generalized Homology. Chicago Lectures in Mathematics Series
Publisher: University of Chicago Press
ISBN: 9780226005270
Category : Mathematics
Languages : en
Pages : 20
Book Description
J. Frank Adams was internationally known and respected as one of the great algebraic topologists. Adams had long been fascinated with exceptional Lie groups, about which he published several papers, and he gave a series of lectures on the topic. The author's detailed lecture notes have enabled volume editors Zafer Mahmud and Mamoru Mimura to preserve the substance and character of Adams's work. Because Lie groups form a staple of most mathematics graduate students' diets, this work on exceptional Lie groups should appeal to many of them, as well as to researchers of algebraic geometry and topology. J. Frank Adams was Lowndean professor of astronomy and geometry at the University of Cambridge. The University of Chicago Press published his Lectures on Lie Groups and has reprinted his Stable Homotopy and Generalized Homology. Chicago Lectures in Mathematics Series
Lectures On Lie Groups (Second Edition)
Author: Wu-yi Hsiang
Publisher: World Scientific
ISBN: 981474073X
Category : Mathematics
Languages : en
Pages : 161
Book Description
This volume consists of nine lectures on selected topics of Lie group theory. We provide the readers a concise introduction as well as a comprehensive 'tour of revisiting' the remarkable achievements of S Lie, W Killing, É Cartan and H Weyl on structural and classification theory of semi-simple Lie groups, Lie algebras and their representations; and also the wonderful duet of Cartan's theory on Lie groups and symmetric spaces.With the benefit of retrospective hindsight, mainly inspired by the outstanding contribution of H Weyl in the special case of compact connected Lie groups, we develop the above theory via a route quite different from the original methods engaged by most other books.We begin our revisiting with the compact theory which is much simpler than that of the general semi-simple Lie theory; mainly due to the well fittings between the Frobenius-Schur character theory and the maximal tori theorem of É Cartan together with Weyl's reduction (cf. Lectures 1-4). It is a wonderful reality of the Lie theory that the clear-cut orbital geometry of the adjoint action of compact Lie groups on themselves (i.e. the geometry of conjugacy classes) is not only the key to understand the compact theory, but it actually already constitutes the central core of the entire semi-simple theory, as well as that of the symmetric spaces (cf. Lectures 5-9). This is the main reason that makes the succeeding generalizations to the semi-simple Lie theory, and then further to the Cartan theory on Lie groups and symmetric spaces, conceptually quite natural, and technically rather straightforward.
Publisher: World Scientific
ISBN: 981474073X
Category : Mathematics
Languages : en
Pages : 161
Book Description
This volume consists of nine lectures on selected topics of Lie group theory. We provide the readers a concise introduction as well as a comprehensive 'tour of revisiting' the remarkable achievements of S Lie, W Killing, É Cartan and H Weyl on structural and classification theory of semi-simple Lie groups, Lie algebras and their representations; and also the wonderful duet of Cartan's theory on Lie groups and symmetric spaces.With the benefit of retrospective hindsight, mainly inspired by the outstanding contribution of H Weyl in the special case of compact connected Lie groups, we develop the above theory via a route quite different from the original methods engaged by most other books.We begin our revisiting with the compact theory which is much simpler than that of the general semi-simple Lie theory; mainly due to the well fittings between the Frobenius-Schur character theory and the maximal tori theorem of É Cartan together with Weyl's reduction (cf. Lectures 1-4). It is a wonderful reality of the Lie theory that the clear-cut orbital geometry of the adjoint action of compact Lie groups on themselves (i.e. the geometry of conjugacy classes) is not only the key to understand the compact theory, but it actually already constitutes the central core of the entire semi-simple theory, as well as that of the symmetric spaces (cf. Lectures 5-9). This is the main reason that makes the succeeding generalizations to the semi-simple Lie theory, and then further to the Cartan theory on Lie groups and symmetric spaces, conceptually quite natural, and technically rather straightforward.
Lie Groups
Author: Daniel Bump
Publisher: Springer Science & Business Media
ISBN: 1461480248
Category : Mathematics
Languages : en
Pages : 532
Book Description
This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) × GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations.
Publisher: Springer Science & Business Media
ISBN: 1461480248
Category : Mathematics
Languages : en
Pages : 532
Book Description
This book is intended for a one-year graduate course on Lie groups and Lie algebras. The book goes beyond the representation theory of compact Lie groups, which is the basis of many texts, and provides a carefully chosen range of material to give the student the bigger picture. The book is organized to allow different paths through the material depending on one's interests. This second edition has substantial new material, including improved discussions of underlying principles, streamlining of some proofs, and many results and topics that were not in the first edition. For compact Lie groups, the book covers the Peter–Weyl theorem, Lie algebra, conjugacy of maximal tori, the Weyl group, roots and weights, Weyl character formula, the fundamental group and more. The book continues with the study of complex analytic groups and general noncompact Lie groups, covering the Bruhat decomposition, Coxeter groups, flag varieties, symmetric spaces, Satake diagrams, embeddings of Lie groups and spin. Other topics that are treated are symmetric function theory, the representation theory of the symmetric group, Frobenius–Schur duality and GL(n) × GL(m) duality with many applications including some in random matrix theory, branching rules, Toeplitz determinants, combinatorics of tableaux, Gelfand pairs, Hecke algebras, the "philosophy of cusp forms" and the cohomology of Grassmannians. An appendix introduces the reader to the use of Sage mathematical software for Lie group computations.
Representation Theory
Author: William Fulton
Publisher: Springer Science & Business Media
ISBN: 9780387974958
Category : Mathematics
Languages : en
Pages : 616
Book Description
Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.
Publisher: Springer Science & Business Media
ISBN: 9780387974958
Category : Mathematics
Languages : en
Pages : 616
Book Description
Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.
Lie Groups, Lie Algebras, and Representations
Author: Brian C. Hall
Publisher: Springer Science & Business Media
ISBN: 9780387401225
Category : Mathematics
Languages : en
Pages : 376
Book Description
This book provides an introduction to Lie groups, Lie algebras, and repre sentation theory, aimed at graduate students in mathematics and physics. Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus, I neither assume a prior course on differentiable manifolds nor provide a con densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semi simple groups and Lie algebras by treating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory. The standard books on Lie theory begin immediately with the general case: a smooth manifold that is also a group. The Lie algebra is then defined as the space of left-invariant vector fields and the exponential mapping is defined in terms of the flow along such vector fields. This approach is undoubtedly the right one in the long run, but it is rather abstract for a reader encountering such things for the first time.
Publisher: Springer Science & Business Media
ISBN: 9780387401225
Category : Mathematics
Languages : en
Pages : 376
Book Description
This book provides an introduction to Lie groups, Lie algebras, and repre sentation theory, aimed at graduate students in mathematics and physics. Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus, I neither assume a prior course on differentiable manifolds nor provide a con densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semi simple groups and Lie algebras by treating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory. The standard books on Lie theory begin immediately with the general case: a smooth manifold that is also a group. The Lie algebra is then defined as the space of left-invariant vector fields and the exponential mapping is defined in terms of the flow along such vector fields. This approach is undoubtedly the right one in the long run, but it is rather abstract for a reader encountering such things for the first time.
Lectures on Lie Groups
Author: Wu Yi Hsiang
Publisher: World Scientific
ISBN: 9789810235291
Category : Mathematics
Languages : en
Pages : 118
Book Description
This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints. For example, the orbital geometry of adjoint action, is regarded as the geometric organization of the totality of non-commutativity of a given compact connected Lie group, while the maximal tori theorem of . Cartan and the Weyl reduction of the adjoint action on G to the Weyl group action on a chosen maximal torus are presented as the key results that provide a clear-cut understanding of the orbital geometry.
Publisher: World Scientific
ISBN: 9789810235291
Category : Mathematics
Languages : en
Pages : 118
Book Description
This invaluable book provides a concise and systematic introduction to the theory of compact connected Lie groups and their representations, as well as a complete presentation of the structure and classification theory. It uses a non-traditional approach and organization. There is a proper balance between, and a natural combination of, the algebraic and geometric aspects of Lie theory, not only in technical proofs but also in conceptual viewpoints. For example, the orbital geometry of adjoint action, is regarded as the geometric organization of the totality of non-commutativity of a given compact connected Lie group, while the maximal tori theorem of . Cartan and the Weyl reduction of the adjoint action on G to the Weyl group action on a chosen maximal torus are presented as the key results that provide a clear-cut understanding of the orbital geometry.