Author: Thomas H. Wolff
Publisher: American Mathematical Soc.
ISBN: 0821834495
Category : Mathematics
Languages : en
Pages : 154
Book Description
This book demonstrates how harmonic analysis can provide penetrating insights into deep aspects of modern analysis. It is both an introduction to the subject as a whole and an overview of those branches of harmonic analysis that are relevant to the Kakeya conjecture. The usual background material is covered in the first few chapters: the Fourier transform, convolution, the inversion theorem, the uncertainty principle and the method of stationary phase. However, the choice of topics is highly selective, with emphasis on those frequently used in research inspired by the problems discussed in the later chapters. These include questions related to the restriction conjecture and the Kakeya conjecture, distance sets, and Fourier transforms of singular measures. These problems are diverse, but often interconnected; they all combine sophisticated Fourier analysis with intriguing links to other areas of mathematics and they continue to stimulate first-rate work. The book focuses on laying out a solid foundation for further reading and research. Technicalities are kept to a minimum, and simpler but more basic methods are often favored over the most recent methods. The clear style of the exposition and the quick progression from fundamentals to advanced topics ensures that both graduate students and research mathematicians will benefit from the book.
Lectures on Harmonic Analysis
Author: Thomas H. Wolff
Publisher: American Mathematical Soc.
ISBN: 0821834495
Category : Mathematics
Languages : en
Pages : 154
Book Description
This book demonstrates how harmonic analysis can provide penetrating insights into deep aspects of modern analysis. It is both an introduction to the subject as a whole and an overview of those branches of harmonic analysis that are relevant to the Kakeya conjecture. The usual background material is covered in the first few chapters: the Fourier transform, convolution, the inversion theorem, the uncertainty principle and the method of stationary phase. However, the choice of topics is highly selective, with emphasis on those frequently used in research inspired by the problems discussed in the later chapters. These include questions related to the restriction conjecture and the Kakeya conjecture, distance sets, and Fourier transforms of singular measures. These problems are diverse, but often interconnected; they all combine sophisticated Fourier analysis with intriguing links to other areas of mathematics and they continue to stimulate first-rate work. The book focuses on laying out a solid foundation for further reading and research. Technicalities are kept to a minimum, and simpler but more basic methods are often favored over the most recent methods. The clear style of the exposition and the quick progression from fundamentals to advanced topics ensures that both graduate students and research mathematicians will benefit from the book.
Publisher: American Mathematical Soc.
ISBN: 0821834495
Category : Mathematics
Languages : en
Pages : 154
Book Description
This book demonstrates how harmonic analysis can provide penetrating insights into deep aspects of modern analysis. It is both an introduction to the subject as a whole and an overview of those branches of harmonic analysis that are relevant to the Kakeya conjecture. The usual background material is covered in the first few chapters: the Fourier transform, convolution, the inversion theorem, the uncertainty principle and the method of stationary phase. However, the choice of topics is highly selective, with emphasis on those frequently used in research inspired by the problems discussed in the later chapters. These include questions related to the restriction conjecture and the Kakeya conjecture, distance sets, and Fourier transforms of singular measures. These problems are diverse, but often interconnected; they all combine sophisticated Fourier analysis with intriguing links to other areas of mathematics and they continue to stimulate first-rate work. The book focuses on laying out a solid foundation for further reading and research. Technicalities are kept to a minimum, and simpler but more basic methods are often favored over the most recent methods. The clear style of the exposition and the quick progression from fundamentals to advanced topics ensures that both graduate students and research mathematicians will benefit from the book.
Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis
Author: Hugh L. Montgomery
Publisher: American Mathematical Soc.
ISBN: 0821807374
Category : Mathematics
Languages : en
Pages : 242
Book Description
This volume contains lectures presented by Hugh L. Montgomery at the NSF-CBMS Regional Conference held at Kansas State University in May 1990. The book focuses on important topics in analytic number theory that involve ideas from harmonic analysis. One particularly valuable aspect of the book is that it collects material that was either unpublished or that had appeared only in the research literature. The book should be a useful resource for harmonic analysts interested in moving into research in analytic number theory. In addition, it is suitable as a textbook in an advanced graduate topics course in number theory.
Publisher: American Mathematical Soc.
ISBN: 0821807374
Category : Mathematics
Languages : en
Pages : 242
Book Description
This volume contains lectures presented by Hugh L. Montgomery at the NSF-CBMS Regional Conference held at Kansas State University in May 1990. The book focuses on important topics in analytic number theory that involve ideas from harmonic analysis. One particularly valuable aspect of the book is that it collects material that was either unpublished or that had appeared only in the research literature. The book should be a useful resource for harmonic analysts interested in moving into research in analytic number theory. In addition, it is suitable as a textbook in an advanced graduate topics course in number theory.
Lectures on Harmonic Analysis
Author: Thomas H. Wolff
Publisher: American Mathematical Soc.
ISBN: 9780821882863
Category : Mathematics
Languages : en
Pages : 158
Book Description
``There were lots of young analysts who flocked to Chicago in those years, but virtually from the start it was clear that Tom had a special brilliance ... Eventually, the mathematical door would open a crack as Tom discovered a new technique, usually of astonishing originality. The end would now be in sight, as [he] unleashed his tremendous technical abilities ... Time after time, [Wolff] would pick a central problem in an area and solve it. After a few more results, the field would be changed forever ... In the mathematical community, the common and rapid response to these breakthroughs was that they were seen, not just as watershed events, but as lightning strikes that permanently altered the landscape.'' --Peter W. Jones, Yale University ``Tom Wolff was not only a deep thinker in mathematics but also a technical master.'' --Barry Simon, California Institute of Technology Thomas H. Wolff was a leading analyst and winner of the Salem and Bocher Prizes. He made significant contributions to several areas of harmonic analysis, in particular to geometrical and measure-theoretic questions related to the Kakeya needle problem. Wolff attacked the problem with awesome power and originality, using both geometric and combinatorial ideas. This book provides an inside look at the techniques used and developed by Wolff. It is based on a graduate course on Fourier analysis he taught at Caltech. The selection of the material is somewhat unconventional in that it leads the reader, in Wolff's unique and straightforward way, through the basics directly to current research topics. The book demonstrates how harmonic analysis can provide penetrating insights into deep aspects of modern analysis. It is an introduction to the subject as a whole and an overview of those branches of harmonic analysis that are relevant to the Kakeya conjecture. The first few chapters cover the usual background material: the Fourier transform, convolution, the inversion theorem, the uncertainty principle, and the method of stationary phase. However, the choice of topics is highly selective, with emphasis on those frequently used in research inspired by the problems discussed in later chapters. These include questions related to the restriction conjecture and the Kakeya conjecture, distance sets, and Fourier transforms of singular measures. These problems are diverse, but often interconnected; they all combine sophisticated Fourier analysis with intriguing links to other areas of mathematics, and they continue to stimulate first-rate work. The book focuses on laying out a solid foundation for further reading and research. Technicalities are kept to a minimum, and simpler but more basic methods are often favored over the most recent methods. The clear style of the exposition and the quick progression from fundamentals to advanced topics ensure that both graduate students and research mathematicians will benefit from the book.
Publisher: American Mathematical Soc.
ISBN: 9780821882863
Category : Mathematics
Languages : en
Pages : 158
Book Description
``There were lots of young analysts who flocked to Chicago in those years, but virtually from the start it was clear that Tom had a special brilliance ... Eventually, the mathematical door would open a crack as Tom discovered a new technique, usually of astonishing originality. The end would now be in sight, as [he] unleashed his tremendous technical abilities ... Time after time, [Wolff] would pick a central problem in an area and solve it. After a few more results, the field would be changed forever ... In the mathematical community, the common and rapid response to these breakthroughs was that they were seen, not just as watershed events, but as lightning strikes that permanently altered the landscape.'' --Peter W. Jones, Yale University ``Tom Wolff was not only a deep thinker in mathematics but also a technical master.'' --Barry Simon, California Institute of Technology Thomas H. Wolff was a leading analyst and winner of the Salem and Bocher Prizes. He made significant contributions to several areas of harmonic analysis, in particular to geometrical and measure-theoretic questions related to the Kakeya needle problem. Wolff attacked the problem with awesome power and originality, using both geometric and combinatorial ideas. This book provides an inside look at the techniques used and developed by Wolff. It is based on a graduate course on Fourier analysis he taught at Caltech. The selection of the material is somewhat unconventional in that it leads the reader, in Wolff's unique and straightforward way, through the basics directly to current research topics. The book demonstrates how harmonic analysis can provide penetrating insights into deep aspects of modern analysis. It is an introduction to the subject as a whole and an overview of those branches of harmonic analysis that are relevant to the Kakeya conjecture. The first few chapters cover the usual background material: the Fourier transform, convolution, the inversion theorem, the uncertainty principle, and the method of stationary phase. However, the choice of topics is highly selective, with emphasis on those frequently used in research inspired by the problems discussed in later chapters. These include questions related to the restriction conjecture and the Kakeya conjecture, distance sets, and Fourier transforms of singular measures. These problems are diverse, but often interconnected; they all combine sophisticated Fourier analysis with intriguing links to other areas of mathematics, and they continue to stimulate first-rate work. The book focuses on laying out a solid foundation for further reading and research. Technicalities are kept to a minimum, and simpler but more basic methods are often favored over the most recent methods. The clear style of the exposition and the quick progression from fundamentals to advanced topics ensure that both graduate students and research mathematicians will benefit from the book.
Harmonic Analysis, Group Representations, Automorphic Forms, and Invariant Theory
Author: Roger Howe
Publisher: World Scientific
ISBN: 9812770798
Category : Mathematics
Languages : en
Pages : 446
Book Description
This volume carries the same title as that of an international conference held at the National University of Singapore, 9OCo11 January 2006 on the occasion of Roger E. Howe''s 60th birthday. Authored by leading members of the Lie theory community, these contributions, expanded from invited lectures given at the conference, are a fitting tribute to the originality, depth and influence of Howe''s mathematical work. The range and diversity of the topics will appeal to a broad audience of research mathematicians and graduate students interested in symmetry and its profound applications. Sample Chapter(s). Foreword (21 KB). Chapter 1: The Theta Correspondence Over R (342 KB). Contents: The Theta Correspondence over R (J Adams); The Heisenberg Group, SL (3, R), and Rigidity (A iap et al.); Pfaffians and Strategies for Integer Choice Games (R Evans & N Wallach); When is an L -Function Non-Vanishing in Part of the Critical Strip? (S Gelbart); Cohomological Automorphic Forms on Unitary Groups, II: Period Relations and Values of L -Functions (M Harris); The Inversion Formula and Holomorphic Extension of the Minimal Representation of the Conformal Group (T Kobayashi & G Mano); Classification des S(r)ries Discr tes pour Certains Groupes Classiques p- Adiques (C Moeglin); Some Algebras of Essentially Compact Distributions of a Reductive p -Adic Group (A Moy & M Tadic); Annihilators of Generalized Verma Modules of the Scalar Type for Classical Lie Algebras (T Oshima); Branching to a Maximal Compact Subgroup (D A Vogan, Jr.); Small Semisimple Subalgebras of Semisimple Lie Algebras (J F Willenbring & G J Zuckerman). Readership: Graduate students and research mathematicians in harmonic analysis, group representations, automorphic forms and invariant theory."
Publisher: World Scientific
ISBN: 9812770798
Category : Mathematics
Languages : en
Pages : 446
Book Description
This volume carries the same title as that of an international conference held at the National University of Singapore, 9OCo11 January 2006 on the occasion of Roger E. Howe''s 60th birthday. Authored by leading members of the Lie theory community, these contributions, expanded from invited lectures given at the conference, are a fitting tribute to the originality, depth and influence of Howe''s mathematical work. The range and diversity of the topics will appeal to a broad audience of research mathematicians and graduate students interested in symmetry and its profound applications. Sample Chapter(s). Foreword (21 KB). Chapter 1: The Theta Correspondence Over R (342 KB). Contents: The Theta Correspondence over R (J Adams); The Heisenberg Group, SL (3, R), and Rigidity (A iap et al.); Pfaffians and Strategies for Integer Choice Games (R Evans & N Wallach); When is an L -Function Non-Vanishing in Part of the Critical Strip? (S Gelbart); Cohomological Automorphic Forms on Unitary Groups, II: Period Relations and Values of L -Functions (M Harris); The Inversion Formula and Holomorphic Extension of the Minimal Representation of the Conformal Group (T Kobayashi & G Mano); Classification des S(r)ries Discr tes pour Certains Groupes Classiques p- Adiques (C Moeglin); Some Algebras of Essentially Compact Distributions of a Reductive p -Adic Group (A Moy & M Tadic); Annihilators of Generalized Verma Modules of the Scalar Type for Classical Lie Algebras (T Oshima); Branching to a Maximal Compact Subgroup (D A Vogan, Jr.); Small Semisimple Subalgebras of Semisimple Lie Algebras (J F Willenbring & G J Zuckerman). Readership: Graduate students and research mathematicians in harmonic analysis, group representations, automorphic forms and invariant theory."
Harmonic Analysis and Applications
Author: Carlos E. Kenig
Publisher: American Mathematical Soc.
ISBN: 1470461277
Category : Education
Languages : en
Pages : 361
Book Description
The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.
Publisher: American Mathematical Soc.
ISBN: 1470461277
Category : Education
Languages : en
Pages : 361
Book Description
The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.
Representation Discovery Using Harmonic Analysis
Author: Sridhar Mahadevan
Publisher: Morgan & Claypool Publishers
ISBN: 1598296590
Category : Artificial intelligence
Languages : en
Pages : 161
Book Description
"This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. A central goal of this book is to show that these analytical tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Representation discovery is an actively developing field, and the author hopes this book will encourage other researchers into exploring this exciting area of research."--BOOK JACKET.
Publisher: Morgan & Claypool Publishers
ISBN: 1598296590
Category : Artificial intelligence
Languages : en
Pages : 161
Book Description
"This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. A central goal of this book is to show that these analytical tools can be generalized from their usual setting in (infinite-dimensional) Euclidean spaces to discrete (finite-dimensional) spaces typically studied in many subfields of AI. Representation discovery is an actively developing field, and the author hopes this book will encourage other researchers into exploring this exciting area of research."--BOOK JACKET.
Classical and Multilinear Harmonic Analysis
Author: Camil Muscalu
Publisher: Cambridge University Press
ISBN: 1107031826
Category : Mathematics
Languages : en
Pages : 341
Book Description
This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Publisher: Cambridge University Press
ISBN: 1107031826
Category : Mathematics
Languages : en
Pages : 341
Book Description
This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Symplectic Methods in Harmonic Analysis and in Mathematical Physics
Author: Maurice A. de Gosson
Publisher: Springer Science & Business Media
ISBN: 3764399929
Category : Mathematics
Languages : en
Pages : 351
Book Description
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
Publisher: Springer Science & Business Media
ISBN: 3764399929
Category : Mathematics
Languages : en
Pages : 351
Book Description
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin’s global theory of pseudo-differential operators, and Feichtinger’s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by “Bopp operators” (also called “Landau operators” in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger’s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
Representation Theory and Complex Analysis
Author: Michael Cowling
Publisher: Springer
ISBN: 3540768920
Category : Mathematics
Languages : en
Pages : 400
Book Description
Six leading experts lecture on a wide spectrum of recent results on the subject of the title. They present a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces, and recall the concept of amenability. They further illustrate how representation theory is related to quantum computing; and much more. Taken together, this volume provides both a solid reference and deep insights on current research activity.
Publisher: Springer
ISBN: 3540768920
Category : Mathematics
Languages : en
Pages : 400
Book Description
Six leading experts lecture on a wide spectrum of recent results on the subject of the title. They present a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces, and recall the concept of amenability. They further illustrate how representation theory is related to quantum computing; and much more. Taken together, this volume provides both a solid reference and deep insights on current research activity.
Introduction to Harmonic Analysis on Reductive P-adic Groups. (MN-23)
Author: Allan G. Silberger
Publisher: Princeton University Press
ISBN: 1400871131
Category : Mathematics
Languages : en
Pages : 379
Book Description
Based on a series of lectures given by Harish-Chandra at the Institute for Advanced Study in 1971-1973, this book provides an introduction to the theory of harmonic analysis on reductive p-adic groups. Originally published in 1979. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400871131
Category : Mathematics
Languages : en
Pages : 379
Book Description
Based on a series of lectures given by Harish-Chandra at the Institute for Advanced Study in 1971-1973, this book provides an introduction to the theory of harmonic analysis on reductive p-adic groups. Originally published in 1979. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.