Author: Kai Lai Chung
Publisher:
ISBN: 9781475717785
Category : Brownian motion processes
Languages : en
Pages : 239
Book Description
This book evolved from several stacks of lecture notes written over a decade and given in classes at slightly varying levels. In transforming the over lapping material into a book, I aimed at presenting some of the best features of the subject with a minimum of prerequisities and technicalities. (Needless to say, one man's technicality is another's professionalism.) But a text frozen in print does not allow for the latitude of the classroom; and the tendency to expand becomes harder to curb without the constraints of time and audience. The result is that this volume contains more topics and details than I had intended, but I hope the forest is still visible with the trees. The book begins at the beginning with the Markov property, followed quickly by the introduction of option al times and martingales. These three topics in the discrete parameter setting are fully discussed in my book A Course In Probability Theory (second edition, Academic Press, 1974). The latter will be referred to throughout this book as the Course, and may be considered as a general background; its specific use is limited to the mate rial on discrete parameter martingale theory cited in {sect} 1. 4. Apart from this and some dispensable references to Markov chains as examples, the book is self-contained.
Lectures from Markov Processes to Brownian Motion
Author: Kai Lai Chung
Publisher:
ISBN: 9781475717785
Category : Brownian motion processes
Languages : en
Pages : 239
Book Description
This book evolved from several stacks of lecture notes written over a decade and given in classes at slightly varying levels. In transforming the over lapping material into a book, I aimed at presenting some of the best features of the subject with a minimum of prerequisities and technicalities. (Needless to say, one man's technicality is another's professionalism.) But a text frozen in print does not allow for the latitude of the classroom; and the tendency to expand becomes harder to curb without the constraints of time and audience. The result is that this volume contains more topics and details than I had intended, but I hope the forest is still visible with the trees. The book begins at the beginning with the Markov property, followed quickly by the introduction of option al times and martingales. These three topics in the discrete parameter setting are fully discussed in my book A Course In Probability Theory (second edition, Academic Press, 1974). The latter will be referred to throughout this book as the Course, and may be considered as a general background; its specific use is limited to the mate rial on discrete parameter martingale theory cited in {sect} 1. 4. Apart from this and some dispensable references to Markov chains as examples, the book is self-contained.
Publisher:
ISBN: 9781475717785
Category : Brownian motion processes
Languages : en
Pages : 239
Book Description
This book evolved from several stacks of lecture notes written over a decade and given in classes at slightly varying levels. In transforming the over lapping material into a book, I aimed at presenting some of the best features of the subject with a minimum of prerequisities and technicalities. (Needless to say, one man's technicality is another's professionalism.) But a text frozen in print does not allow for the latitude of the classroom; and the tendency to expand becomes harder to curb without the constraints of time and audience. The result is that this volume contains more topics and details than I had intended, but I hope the forest is still visible with the trees. The book begins at the beginning with the Markov property, followed quickly by the introduction of option al times and martingales. These three topics in the discrete parameter setting are fully discussed in my book A Course In Probability Theory (second edition, Academic Press, 1974). The latter will be referred to throughout this book as the Course, and may be considered as a general background; its specific use is limited to the mate rial on discrete parameter martingale theory cited in {sect} 1. 4. Apart from this and some dispensable references to Markov chains as examples, the book is self-contained.
Markov Processes, Brownian Motion, and Time Symmetry
Author: Kai Lai Chung
Publisher: Springer Science & Business Media
ISBN: 0387220267
Category : Mathematics
Languages : en
Pages : 443
Book Description
From the reviews of the First Edition: "This excellent book is based on several sets of lecture notes written over a decade and has its origin in a one-semester course given by the author at the ETH, Zürich, in the spring of 1970. The author's aim was to present some of the best features of Markov processes and, in particular, of Brownian motion with a minimum of prerequisites and technicalities. The reader who becomes acquainted with the volume cannot but agree with the reviewer that the author was very successful in accomplishing this goal...The volume is very useful for people who wish to learn Markov processes but it seems to the reviewer that it is also of great interest to specialists in this area who could derive much stimulus from it. One can be convinced that it will receive wide circulation." (Mathematical Reviews) This new edition contains 9 new chapters which include new exercises, references, and multiple corrections throughout the original text.
Publisher: Springer Science & Business Media
ISBN: 0387220267
Category : Mathematics
Languages : en
Pages : 443
Book Description
From the reviews of the First Edition: "This excellent book is based on several sets of lecture notes written over a decade and has its origin in a one-semester course given by the author at the ETH, Zürich, in the spring of 1970. The author's aim was to present some of the best features of Markov processes and, in particular, of Brownian motion with a minimum of prerequisites and technicalities. The reader who becomes acquainted with the volume cannot but agree with the reviewer that the author was very successful in accomplishing this goal...The volume is very useful for people who wish to learn Markov processes but it seems to the reviewer that it is also of great interest to specialists in this area who could derive much stimulus from it. One can be convinced that it will receive wide circulation." (Mathematical Reviews) This new edition contains 9 new chapters which include new exercises, references, and multiple corrections throughout the original text.
Green, Brown, And Probability
Author: Kai Lai Chung
Publisher: World Scientific
ISBN: 9814499684
Category : Mathematics
Languages : en
Pages : 122
Book Description
This volume shows modern probabilistic methods in action: Brownian Motion Process as applied to the electrical phenomena investigated by Green et al., beginning with the Newton-Coulomb potential and ending with solutions by first and last exits of Brownian paths from conductors.
Publisher: World Scientific
ISBN: 9814499684
Category : Mathematics
Languages : en
Pages : 122
Book Description
This volume shows modern probabilistic methods in action: Brownian Motion Process as applied to the electrical phenomena investigated by Green et al., beginning with the Newton-Coulomb potential and ending with solutions by first and last exits of Brownian paths from conductors.
Aspects of Brownian Motion
Author: Roger Mansuy
Publisher: Springer Science & Business Media
ISBN: 3540499660
Category : Mathematics
Languages : en
Pages : 205
Book Description
Stochastic calculus and excursion theory are very efficient tools for obtaining either exact or asymptotic results about Brownian motion and related processes. This book focuses on special classes of Brownian functionals, including Gaussian subspaces of the Gaussian space of Brownian motion; Brownian quadratic funtionals; Brownian local times; Exponential functionals of Brownian motion with drift; Time spent by Brownian motion below a multiple of its one-sided supremum.
Publisher: Springer Science & Business Media
ISBN: 3540499660
Category : Mathematics
Languages : en
Pages : 205
Book Description
Stochastic calculus and excursion theory are very efficient tools for obtaining either exact or asymptotic results about Brownian motion and related processes. This book focuses on special classes of Brownian functionals, including Gaussian subspaces of the Gaussian space of Brownian motion; Brownian quadratic funtionals; Brownian local times; Exponential functionals of Brownian motion with drift; Time spent by Brownian motion below a multiple of its one-sided supremum.
Some Aspects of Brownian Motion
Author: Marc Yor
Publisher: Birkhäuser
ISBN: 3034889542
Category : Mathematics
Languages : en
Pages : 160
Book Description
The following notes represent approximately the second half of the lectures I gave in the Nachdiplomvorlesung, in ETH, Zurich, between October 1991 and February 1992, together with the contents of six additional lectures I gave in ETH, in November and December 1993. Part I, the elder brother of the present book [Part II], aimed at the computation, as explicitly as possible, of a number of interesting functionals of Brownian motion. It may be natural that Part II, the younger brother, looks more into the main technique with which Part I was "working", namely: martingales and stochastic calculus. As F. Knight writes, in a review article on Part I, in which research on Brownian motion is compared to gold mining: "In the days of P. Levy, and even as late as the theorems of "Ray and Knight" (1963), it was possible for the practiced eye to pick up valuable reward without the aid of much technology . . . Thereafter, however, the rewards are increasingly achieved by the application of high technology". Although one might argue whether this golden age is really foregone, and discuss the "height" of the technology involved, this quotation is closely related to the main motivations of Part II: this technology, which includes stochastic calculus for general discontinuous semi-martingales, enlargement of filtrations, . . .
Publisher: Birkhäuser
ISBN: 3034889542
Category : Mathematics
Languages : en
Pages : 160
Book Description
The following notes represent approximately the second half of the lectures I gave in the Nachdiplomvorlesung, in ETH, Zurich, between October 1991 and February 1992, together with the contents of six additional lectures I gave in ETH, in November and December 1993. Part I, the elder brother of the present book [Part II], aimed at the computation, as explicitly as possible, of a number of interesting functionals of Brownian motion. It may be natural that Part II, the younger brother, looks more into the main technique with which Part I was "working", namely: martingales and stochastic calculus. As F. Knight writes, in a review article on Part I, in which research on Brownian motion is compared to gold mining: "In the days of P. Levy, and even as late as the theorems of "Ray and Knight" (1963), it was possible for the practiced eye to pick up valuable reward without the aid of much technology . . . Thereafter, however, the rewards are increasingly achieved by the application of high technology". Although one might argue whether this golden age is really foregone, and discuss the "height" of the technology involved, this quotation is closely related to the main motivations of Part II: this technology, which includes stochastic calculus for general discontinuous semi-martingales, enlargement of filtrations, . . .
Brownian Motion
Author: Peter Mörters
Publisher: Cambridge University Press
ISBN: 1139486578
Category : Mathematics
Languages : en
Pages :
Book Description
This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.
Publisher: Cambridge University Press
ISBN: 1139486578
Category : Mathematics
Languages : en
Pages :
Book Description
This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.
Stochastic Processes
Author: Kiyosi Ito
Publisher: Springer Science & Business Media
ISBN: 3662100657
Category : Mathematics
Languages : en
Pages : 246
Book Description
This accessible introduction to the theory of stochastic processes emphasizes Levy processes and Markov processes. It gives a thorough treatment of the decomposition of paths of processes with independent increments (the Lévy-Itô decomposition). It also contains a detailed treatment of time-homogeneous Markov processes from the viewpoint of probability measures on path space. In addition, 70 exercises and their complete solutions are included.
Publisher: Springer Science & Business Media
ISBN: 3662100657
Category : Mathematics
Languages : en
Pages : 246
Book Description
This accessible introduction to the theory of stochastic processes emphasizes Levy processes and Markov processes. It gives a thorough treatment of the decomposition of paths of processes with independent increments (the Lévy-Itô decomposition). It also contains a detailed treatment of time-homogeneous Markov processes from the viewpoint of probability measures on path space. In addition, 70 exercises and their complete solutions are included.
Lectures on the Coupling Method
Author: Torgny Lindvall
Publisher: Courier Corporation
ISBN: 048615324X
Category : Mathematics
Languages : en
Pages : 292
Book Description
Practical and easy-to-use reference progresses from simple to advanced topics, covering, among other topics, renewal theory, Markov chains, Poisson approximation, ergodicity, and Strassen's theorem. 1992 edition.
Publisher: Courier Corporation
ISBN: 048615324X
Category : Mathematics
Languages : en
Pages : 292
Book Description
Practical and easy-to-use reference progresses from simple to advanced topics, covering, among other topics, renewal theory, Markov chains, Poisson approximation, ergodicity, and Strassen's theorem. 1992 edition.
Multiparameter Processes
Author: Davar Khoshnevisan
Publisher: Springer Science & Business Media
ISBN: 0387216316
Category : Mathematics
Languages : en
Pages : 590
Book Description
Self-contained presentation: from elementary material to state-of-the-art research; Much of the theory in book-form for the first time; Connections are made between probability and other areas of mathematics, engineering and mathematical physics
Publisher: Springer Science & Business Media
ISBN: 0387216316
Category : Mathematics
Languages : en
Pages : 590
Book Description
Self-contained presentation: from elementary material to state-of-the-art research; Much of the theory in book-form for the first time; Connections are made between probability and other areas of mathematics, engineering and mathematical physics
Stochastic Processes and Applications
Author: Grigorios A. Pavliotis
Publisher: Springer
ISBN: 1493913239
Category : Mathematics
Languages : en
Pages : 345
Book Description
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Publisher: Springer
ISBN: 1493913239
Category : Mathematics
Languages : en
Pages : 345
Book Description
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.