Author: Kung-ching Chang
Publisher: World Scientific
ISBN: 981314470X
Category : Mathematics
Languages : en
Pages : 325
Book Description
This is based on the course 'Calculus of Variations' taught at Peking University from 2006 to 2010 for advanced undergraduate to graduate students majoring in mathematics. The book contains 20 lectures covering both the theoretical background material as well as an abundant collection of applications. Lectures 1-8 focus on the classical theory of calculus of variations. Lectures 9-14 introduce direct methods along with their theoretical foundations. Lectures 15-20 showcase a broad collection of applications. The book offers a panoramic view of the very important topic on calculus of variations. This is a valuable resource not only to mathematicians, but also to those students in engineering, economics, and management, etc.
Lecture Notes On Calculus Of Variations
Author: Kung-ching Chang
Publisher: World Scientific
ISBN: 981314470X
Category : Mathematics
Languages : en
Pages : 325
Book Description
This is based on the course 'Calculus of Variations' taught at Peking University from 2006 to 2010 for advanced undergraduate to graduate students majoring in mathematics. The book contains 20 lectures covering both the theoretical background material as well as an abundant collection of applications. Lectures 1-8 focus on the classical theory of calculus of variations. Lectures 9-14 introduce direct methods along with their theoretical foundations. Lectures 15-20 showcase a broad collection of applications. The book offers a panoramic view of the very important topic on calculus of variations. This is a valuable resource not only to mathematicians, but also to those students in engineering, economics, and management, etc.
Publisher: World Scientific
ISBN: 981314470X
Category : Mathematics
Languages : en
Pages : 325
Book Description
This is based on the course 'Calculus of Variations' taught at Peking University from 2006 to 2010 for advanced undergraduate to graduate students majoring in mathematics. The book contains 20 lectures covering both the theoretical background material as well as an abundant collection of applications. Lectures 1-8 focus on the classical theory of calculus of variations. Lectures 9-14 introduce direct methods along with their theoretical foundations. Lectures 15-20 showcase a broad collection of applications. The book offers a panoramic view of the very important topic on calculus of variations. This is a valuable resource not only to mathematicians, but also to those students in engineering, economics, and management, etc.
Calculus of Variations and Optimal Control Theory
Author: Daniel Liberzon
Publisher: Princeton University Press
ISBN: 0691151873
Category : Mathematics
Languages : en
Pages : 255
Book Description
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Publisher: Princeton University Press
ISBN: 0691151873
Category : Mathematics
Languages : en
Pages : 255
Book Description
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Differential Geometry, Calculus of Variations, and Their Applications
Author: George M. Rassias
Publisher: CRC Press
ISBN: 9780824772673
Category : Mathematics
Languages : en
Pages : 550
Book Description
This book contains a series of papers on some of the longstanding research problems of geometry, calculus of variations, and their applications. It is suitable for advanced graduate students, teachers, research mathematicians, and other professionals in mathematics.
Publisher: CRC Press
ISBN: 9780824772673
Category : Mathematics
Languages : en
Pages : 550
Book Description
This book contains a series of papers on some of the longstanding research problems of geometry, calculus of variations, and their applications. It is suitable for advanced graduate students, teachers, research mathematicians, and other professionals in mathematics.
Introduction to the Calculus of Variations
Author: Bernard Dacorogna
Publisher: Imperial College Press
ISBN: 1848163339
Category : Mathematics
Languages : en
Pages : 241
Book Description
The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist ? mathematicians, physicists, engineers, students or researchers ? in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, the chapter on regularity has been significantly expanded and 27 new exercises have been added. The book, containing a total of 103 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.
Publisher: Imperial College Press
ISBN: 1848163339
Category : Mathematics
Languages : en
Pages : 241
Book Description
The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist ? mathematicians, physicists, engineers, students or researchers ? in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, the chapter on regularity has been significantly expanded and 27 new exercises have been added. The book, containing a total of 103 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.
Calculus of Variations
Author: I. M. Gelfand
Publisher: Courier Corporation
ISBN: 0486135012
Category : Mathematics
Languages : en
Pages : 260
Book Description
Fresh, lively text serves as a modern introduction to the subject, with applications to the mechanics of systems with a finite number of degrees of freedom. Ideal for math and physics students.
Publisher: Courier Corporation
ISBN: 0486135012
Category : Mathematics
Languages : en
Pages : 260
Book Description
Fresh, lively text serves as a modern introduction to the subject, with applications to the mechanics of systems with a finite number of degrees of freedom. Ideal for math and physics students.
Calculus of Variations and Nonlinear Partial Differential Equations
Author: Luigi Ambrosio
Publisher: Springer
ISBN: 354075914X
Category : Mathematics
Languages : en
Pages : 213
Book Description
This volume provides the texts of lectures given by L. Ambrosio, L. Caffarelli, M. Crandall, L.C. Evans, N. Fusco at the Summer course held in Cetraro, Italy in 2005. These are introductory reports on current research by world leaders in the fields of calculus of variations and partial differential equations. Coverage includes transport equations for nonsmooth vector fields, viscosity methods for the infinite Laplacian, and geometrical aspects of symmetrization.
Publisher: Springer
ISBN: 354075914X
Category : Mathematics
Languages : en
Pages : 213
Book Description
This volume provides the texts of lectures given by L. Ambrosio, L. Caffarelli, M. Crandall, L.C. Evans, N. Fusco at the Summer course held in Cetraro, Italy in 2005. These are introductory reports on current research by world leaders in the fields of calculus of variations and partial differential equations. Coverage includes transport equations for nonsmooth vector fields, viscosity methods for the infinite Laplacian, and geometrical aspects of symmetrization.
The Calculus of Variations
Author: Bruce van Brunt
Publisher: Springer Science & Business Media
ISBN: 0387216979
Category : Mathematics
Languages : en
Pages : 295
Book Description
Suitable for advanced undergraduate and graduate students of mathematics, physics, or engineering, this introduction to the calculus of variations focuses on variational problems involving one independent variable. It also discusses more advanced topics such as the inverse problem, eigenvalue problems, and Noether’s theorem. The text includes numerous examples along with problems to help students consolidate the material.
Publisher: Springer Science & Business Media
ISBN: 0387216979
Category : Mathematics
Languages : en
Pages : 295
Book Description
Suitable for advanced undergraduate and graduate students of mathematics, physics, or engineering, this introduction to the calculus of variations focuses on variational problems involving one independent variable. It also discusses more advanced topics such as the inverse problem, eigenvalue problems, and Noether’s theorem. The text includes numerous examples along with problems to help students consolidate the material.
Selected Chapters in the Calculus of Variations
Author: Jürgen Moser
Publisher: Birkhauser
ISBN: 9780817621858
Category : Mathematics
Languages : en
Pages : 132
Book Description
"These lecture notes describe the Aubry-Mather-Theory within the calculus of variations. The text consists of the translated original lectures of Jurgen Moser and a bibliographic appendix with comments on the current state-of-the-art in this field of interest. Students will find a rapid introduction to the calculus of variations, leading to modern dynamical systems theory. Differential geometric applications are discussed, in particular billiards and minimal geodesics on the two-dimensional torus. Many exercises and open questions make this book a valuable resource for both teaching and research."--BOOK JACKET.
Publisher: Birkhauser
ISBN: 9780817621858
Category : Mathematics
Languages : en
Pages : 132
Book Description
"These lecture notes describe the Aubry-Mather-Theory within the calculus of variations. The text consists of the translated original lectures of Jurgen Moser and a bibliographic appendix with comments on the current state-of-the-art in this field of interest. Students will find a rapid introduction to the calculus of variations, leading to modern dynamical systems theory. Differential geometric applications are discussed, in particular billiards and minimal geodesics on the two-dimensional torus. Many exercises and open questions make this book a valuable resource for both teaching and research."--BOOK JACKET.
Advanced Calculus (Revised Edition)
Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
A First Course in the Calculus of Variations
Author: Mark Kot
Publisher: American Mathematical Society
ISBN: 1470414953
Category : Mathematics
Languages : en
Pages : 311
Book Description
This book is intended for a first course in the calculus of variations, at the senior or beginning graduate level. The reader will learn methods for finding functions that maximize or minimize integrals. The text lays out important necessary and sufficient conditions for extrema in historical order, and it illustrates these conditions with numerous worked-out examples from mechanics, optics, geometry, and other fields. The exposition starts with simple integrals containing a single independent variable, a single dependent variable, and a single derivative, subject to weak variations, but steadily moves on to more advanced topics, including multivariate problems, constrained extrema, homogeneous problems, problems with variable endpoints, broken extremals, strong variations, and sufficiency conditions. Numerous line drawings clarify the mathematics. Each chapter ends with recommended readings that introduce the student to the relevant scientific literature and with exercises that consolidate understanding.
Publisher: American Mathematical Society
ISBN: 1470414953
Category : Mathematics
Languages : en
Pages : 311
Book Description
This book is intended for a first course in the calculus of variations, at the senior or beginning graduate level. The reader will learn methods for finding functions that maximize or minimize integrals. The text lays out important necessary and sufficient conditions for extrema in historical order, and it illustrates these conditions with numerous worked-out examples from mechanics, optics, geometry, and other fields. The exposition starts with simple integrals containing a single independent variable, a single dependent variable, and a single derivative, subject to weak variations, but steadily moves on to more advanced topics, including multivariate problems, constrained extrema, homogeneous problems, problems with variable endpoints, broken extremals, strong variations, and sufficiency conditions. Numerous line drawings clarify the mathematics. Each chapter ends with recommended readings that introduce the student to the relevant scientific literature and with exercises that consolidate understanding.