Author: Sergii Babichev
Publisher: Springer Nature
ISBN: 303116203X
Category : Technology & Engineering
Languages : en
Pages : 735
Book Description
This book contains of 39 scientific papers which include the results of research regarding the current directions in the fields of data mining, machine learning and decision-making. This book is devoted to current problems of artificial and computational intelligence including decision-making systems. Collecting, analysis and processing information are the current directions of modern computer science. Development of new modern information and computer technologies for data analysis and processing in various fields of data mining and machine learning create the conditions for increasing effectiveness of the information processing by both the decrease of time and the increase of accuracy of the data processing. The papers are divided in terms of their topic into three sections. The first section "Analysis and Modeling of Hybrid Systems and Processes" contains of 11 papers, and the second section "Theoretical and Applied Aspects of Decision-Making Systems" contains of 11 ones too. There are 17 papers in the third section "Data Engineering, Computational Intelligence and Inductive Modeling". The book is focused to scientists and developers in the fields of data mining, machine learning and decision-making systems.
Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making
Author: Sergii Babichev
Publisher: Springer Nature
ISBN: 303116203X
Category : Technology & Engineering
Languages : en
Pages : 735
Book Description
This book contains of 39 scientific papers which include the results of research regarding the current directions in the fields of data mining, machine learning and decision-making. This book is devoted to current problems of artificial and computational intelligence including decision-making systems. Collecting, analysis and processing information are the current directions of modern computer science. Development of new modern information and computer technologies for data analysis and processing in various fields of data mining and machine learning create the conditions for increasing effectiveness of the information processing by both the decrease of time and the increase of accuracy of the data processing. The papers are divided in terms of their topic into three sections. The first section "Analysis and Modeling of Hybrid Systems and Processes" contains of 11 papers, and the second section "Theoretical and Applied Aspects of Decision-Making Systems" contains of 11 ones too. There are 17 papers in the third section "Data Engineering, Computational Intelligence and Inductive Modeling". The book is focused to scientists and developers in the fields of data mining, machine learning and decision-making systems.
Publisher: Springer Nature
ISBN: 303116203X
Category : Technology & Engineering
Languages : en
Pages : 735
Book Description
This book contains of 39 scientific papers which include the results of research regarding the current directions in the fields of data mining, machine learning and decision-making. This book is devoted to current problems of artificial and computational intelligence including decision-making systems. Collecting, analysis and processing information are the current directions of modern computer science. Development of new modern information and computer technologies for data analysis and processing in various fields of data mining and machine learning create the conditions for increasing effectiveness of the information processing by both the decrease of time and the increase of accuracy of the data processing. The papers are divided in terms of their topic into three sections. The first section "Analysis and Modeling of Hybrid Systems and Processes" contains of 11 papers, and the second section "Theoretical and Applied Aspects of Decision-Making Systems" contains of 11 ones too. There are 17 papers in the third section "Data Engineering, Computational Intelligence and Inductive Modeling". The book is focused to scientists and developers in the fields of data mining, machine learning and decision-making systems.
Lecture Notes in Computational Intelligence and Decision Making
Author: Sergii Babichev
Publisher: Springer Nature
ISBN: 3030820149
Category : Technology & Engineering
Languages : en
Pages : 805
Book Description
This book is devoted to current problems of artificial and computational intelligence including decision-making systems. Collecting, analysis, and processing information are the current directions of modern computer science. Development of new modern information and computer technologies for data analysis and processing in various fields of data mining and machine learning creates the conditions for increasing effectiveness of the information processing by both the decrease of time and the increase of accuracy of the data processing. The book contains of 54 science papers which include the results of research concerning the current directions in the fields of data mining, machine learning, and decision making. The papers are divided in terms of their topic into three sections. The first section "Analysis and Modeling of Complex Systems and Processes" contains of 26 papers, and the second section "Theoretical and Applied Aspects of Decision-Making Systems" contains of 13 papers. There are 15 papers in the third section "Computational Intelligence and Inductive Modeling". The book is focused to scientists and developers in the fields of data mining, machine learning and decision-making systems.
Publisher: Springer Nature
ISBN: 3030820149
Category : Technology & Engineering
Languages : en
Pages : 805
Book Description
This book is devoted to current problems of artificial and computational intelligence including decision-making systems. Collecting, analysis, and processing information are the current directions of modern computer science. Development of new modern information and computer technologies for data analysis and processing in various fields of data mining and machine learning creates the conditions for increasing effectiveness of the information processing by both the decrease of time and the increase of accuracy of the data processing. The book contains of 54 science papers which include the results of research concerning the current directions in the fields of data mining, machine learning, and decision making. The papers are divided in terms of their topic into three sections. The first section "Analysis and Modeling of Complex Systems and Processes" contains of 26 papers, and the second section "Theoretical and Applied Aspects of Decision-Making Systems" contains of 13 papers. There are 15 papers in the third section "Computational Intelligence and Inductive Modeling". The book is focused to scientists and developers in the fields of data mining, machine learning and decision-making systems.
Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making
Author: Sergii Babichev
Publisher:
ISBN: 9783031162046
Category : Computational intelligence
Languages : en
Pages : 0
Book Description
This book contains of 39 scientific papers which include the results of research regarding the current directions in the fields of data mining, machine learning and decision-making. This book is devoted to current problems of artificial and computational intelligence including decision-making systems. Collecting, analysis and processing information are the current directions of modern computer science. Development of new modern information and computer technologies for data analysis and processing in various fields of data mining and machine learning create the conditions for increasing effectiveness of the information processing by both the decrease of time and the increase of accuracy of the data processing. The papers are divided in terms of their topic into three sections. The first section "Analysis and Modeling of Hybrid Systems and Processes" contains of 11 papers, and the second section "Theoretical and Applied Aspects of Decision-Making Systems" contains of 11 ones too. There are 17 papers in the third section "Data Engineering, Computational Intelligence and Inductive Modeling". The book is focused to scientists and developers in the fields of data mining, machine learning and decision-making systems.
Publisher:
ISBN: 9783031162046
Category : Computational intelligence
Languages : en
Pages : 0
Book Description
This book contains of 39 scientific papers which include the results of research regarding the current directions in the fields of data mining, machine learning and decision-making. This book is devoted to current problems of artificial and computational intelligence including decision-making systems. Collecting, analysis and processing information are the current directions of modern computer science. Development of new modern information and computer technologies for data analysis and processing in various fields of data mining and machine learning create the conditions for increasing effectiveness of the information processing by both the decrease of time and the increase of accuracy of the data processing. The papers are divided in terms of their topic into three sections. The first section "Analysis and Modeling of Hybrid Systems and Processes" contains of 11 papers, and the second section "Theoretical and Applied Aspects of Decision-Making Systems" contains of 11 ones too. There are 17 papers in the third section "Data Engineering, Computational Intelligence and Inductive Modeling". The book is focused to scientists and developers in the fields of data mining, machine learning and decision-making systems.
Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making
Author: Sergii Babichev
Publisher: Springer
ISBN: 9783031709586
Category : Computers
Languages : en
Pages : 0
Book Description
This book addresses contemporary challenges in artificial and computational intelligence, particularly focusing on decision-making systems. It explores current trends in computer science, including the collection, analysis, and processing of information. The advancement of modern information and computer technologies for data analysis and processing in data mining and machine learning is highlighted, showcasing their role in enhancing the efficiency of information processing by reducing time and increasing accuracy. The book comprises 37 scientific papers presenting cutting-edge research in data mining, machine learning, and decision-making. It is categorized into three sections: 1. Analysis and modeling of hybrid systems and processes—14 papers. 2. Theoretical and applied aspects of decision-making systems—7 papers. 3. Data engineering, computational intelligence, and inductive modeling—16 papers. This book is designed for scientists and developers specializing in data mining, machine learning, and decision-making systems.
Publisher: Springer
ISBN: 9783031709586
Category : Computers
Languages : en
Pages : 0
Book Description
This book addresses contemporary challenges in artificial and computational intelligence, particularly focusing on decision-making systems. It explores current trends in computer science, including the collection, analysis, and processing of information. The advancement of modern information and computer technologies for data analysis and processing in data mining and machine learning is highlighted, showcasing their role in enhancing the efficiency of information processing by reducing time and increasing accuracy. The book comprises 37 scientific papers presenting cutting-edge research in data mining, machine learning, and decision-making. It is categorized into three sections: 1. Analysis and modeling of hybrid systems and processes—14 papers. 2. Theoretical and applied aspects of decision-making systems—7 papers. 3. Data engineering, computational intelligence, and inductive modeling—16 papers. This book is designed for scientists and developers specializing in data mining, machine learning, and decision-making systems.
Financial Decision Making Using Computational Intelligence
Author: Michael Doumpos
Publisher: Springer Science & Business Media
ISBN: 1461437733
Category : Business & Economics
Languages : en
Pages : 336
Book Description
The increasing complexity of financial problems and the enormous volume of financial data often make it difficult to apply traditional modeling and algorithmic procedures. In this context, the field of computational intelligence provides an arsenal of particularly useful techniques. These techniques include new modeling tools for decision making under risk and uncertainty, data mining techniques for analyzing complex data bases, and powerful algorithms for complex optimization problems. Computational intelligence has also evolved rapidly over the past few years and it is now one of the most active fields in operations research and computer science. This volume presents the recent advances of the use of computation intelligence in financial decision making. The book covers all the major areas of computational intelligence and a wide range of problems in finance, such as portfolio optimization, credit risk analysis, asset valuation, financial forecasting, and trading.
Publisher: Springer Science & Business Media
ISBN: 1461437733
Category : Business & Economics
Languages : en
Pages : 336
Book Description
The increasing complexity of financial problems and the enormous volume of financial data often make it difficult to apply traditional modeling and algorithmic procedures. In this context, the field of computational intelligence provides an arsenal of particularly useful techniques. These techniques include new modeling tools for decision making under risk and uncertainty, data mining techniques for analyzing complex data bases, and powerful algorithms for complex optimization problems. Computational intelligence has also evolved rapidly over the past few years and it is now one of the most active fields in operations research and computer science. This volume presents the recent advances of the use of computation intelligence in financial decision making. The book covers all the major areas of computational intelligence and a wide range of problems in finance, such as portfolio optimization, credit risk analysis, asset valuation, financial forecasting, and trading.
COVID-19: Prediction, Decision-Making, and its Impacts
Author: K.C. Santosh
Publisher: Springer Nature
ISBN: 9811596824
Category : Technology & Engineering
Languages : en
Pages : 137
Book Description
The book aims to outline the issues of AI and COVID-19, involving predictions,medical support decision-making, and possible impact on human life. Starting withmajor COVID-19 issues and challenges, it takes possible AI-based solutions forseveral problems, such as public health surveillance, early (epidemic) prediction,COVID-19 positive case detection, and robotics integration against COVID-19.Beside mathematical modeling, it includes the necessity of changes in innovationsand possible COVID-19 impacts. The book covers a clear understanding of AI-driven tools and techniques, where pattern recognition, anomaly detection, machinelearning, and data analytics are considered. It aims to include the wide range ofaudiences from computer science and engineering to healthcare professionals.
Publisher: Springer Nature
ISBN: 9811596824
Category : Technology & Engineering
Languages : en
Pages : 137
Book Description
The book aims to outline the issues of AI and COVID-19, involving predictions,medical support decision-making, and possible impact on human life. Starting withmajor COVID-19 issues and challenges, it takes possible AI-based solutions forseveral problems, such as public health surveillance, early (epidemic) prediction,COVID-19 positive case detection, and robotics integration against COVID-19.Beside mathematical modeling, it includes the necessity of changes in innovationsand possible COVID-19 impacts. The book covers a clear understanding of AI-driven tools and techniques, where pattern recognition, anomaly detection, machinelearning, and data analytics are considered. It aims to include the wide range ofaudiences from computer science and engineering to healthcare professionals.
Cognitive Computing for Big Data Systems Over IoT
Author: Arun Kumar Sangaiah
Publisher: Springer
ISBN: 3319706888
Category : Technology & Engineering
Languages : en
Pages : 383
Book Description
This book brings a high level of fluidity to analytics and addresses recent trends, innovative ideas, challenges and cognitive computing solutions in big data and the Internet of Things (IoT). It explores domain knowledge, data science reasoning and cognitive methods in the context of the IoT, extending current data science approaches by incorporating insights from experts as well as a notion of artificial intelligence, and performing inferences on the knowledge The book provides a comprehensive overview of the constituent paradigms underlying cognitive computing methods, which illustrate the increased focus on big data in IoT problems as they evolve. It includes novel, in-depth fundamental research contributions from a methodological/application in data science accomplishing sustainable solution for the future perspective. Mainly focusing on the design of the best cognitive embedded data science technologies to process and analyze the large amount of data collected through the IoT, and aid better decision making, the book discusses adapting decision-making approaches under cognitive computing paradigms to demonstrate how the proposed procedures as well as big data and IoT problems can be handled in practice. This book is a valuable resource for scientists, professionals, researchers, and academicians dealing with the new challenges and advances in the specific areas of cognitive computing and data science approaches.
Publisher: Springer
ISBN: 3319706888
Category : Technology & Engineering
Languages : en
Pages : 383
Book Description
This book brings a high level of fluidity to analytics and addresses recent trends, innovative ideas, challenges and cognitive computing solutions in big data and the Internet of Things (IoT). It explores domain knowledge, data science reasoning and cognitive methods in the context of the IoT, extending current data science approaches by incorporating insights from experts as well as a notion of artificial intelligence, and performing inferences on the knowledge The book provides a comprehensive overview of the constituent paradigms underlying cognitive computing methods, which illustrate the increased focus on big data in IoT problems as they evolve. It includes novel, in-depth fundamental research contributions from a methodological/application in data science accomplishing sustainable solution for the future perspective. Mainly focusing on the design of the best cognitive embedded data science technologies to process and analyze the large amount of data collected through the IoT, and aid better decision making, the book discusses adapting decision-making approaches under cognitive computing paradigms to demonstrate how the proposed procedures as well as big data and IoT problems can be handled in practice. This book is a valuable resource for scientists, professionals, researchers, and academicians dealing with the new challenges and advances in the specific areas of cognitive computing and data science approaches.
Agent-Based Computational Economics
Author: Shu-Heng Chen
Publisher: Routledge
ISBN: 1317560922
Category : Business & Economics
Languages : en
Pages : 543
Book Description
This book aims to answer two questions that are fundamental to the study of agent-based economic models: what is agent-based computational economics and why do we need agent-based economic modelling of economy? This book provides a review of the development of agent-based computational economics (ACE) from a perspective on how artificial economic agents are designed under the influences of complex sciences, experimental economics, artificial intelligence, evolutionary biology, psychology, anthropology and neuroscience. This book begins with a historical review of ACE by tracing its origins. From a modelling viewpoint, ACE brings truly decentralized procedures into market analysis, from a single market to the whole economy. This book also reviews how experimental economics and artificial intelligence have shaped the development of ACE. For the former, the book discusses how ACE models can be used to analyse the economic consequences of cognitive capacity, personality and cultural inheritance. For the latter, the book covers the various tools used to construct artificial adaptive agents, including reinforcement learning, fuzzy decision rules, neural networks, and evolutionary computation. This book will be of interest to graduate students researching computational economics, experimental economics, behavioural economics, and research methodology.
Publisher: Routledge
ISBN: 1317560922
Category : Business & Economics
Languages : en
Pages : 543
Book Description
This book aims to answer two questions that are fundamental to the study of agent-based economic models: what is agent-based computational economics and why do we need agent-based economic modelling of economy? This book provides a review of the development of agent-based computational economics (ACE) from a perspective on how artificial economic agents are designed under the influences of complex sciences, experimental economics, artificial intelligence, evolutionary biology, psychology, anthropology and neuroscience. This book begins with a historical review of ACE by tracing its origins. From a modelling viewpoint, ACE brings truly decentralized procedures into market analysis, from a single market to the whole economy. This book also reviews how experimental economics and artificial intelligence have shaped the development of ACE. For the former, the book discusses how ACE models can be used to analyse the economic consequences of cognitive capacity, personality and cultural inheritance. For the latter, the book covers the various tools used to construct artificial adaptive agents, including reinforcement learning, fuzzy decision rules, neural networks, and evolutionary computation. This book will be of interest to graduate students researching computational economics, experimental economics, behavioural economics, and research methodology.
Proceedings of International Conference on Computational Intelligence and Data Engineering
Author: Nabendu Chaki
Publisher: Springer Nature
ISBN: 9811587671
Category : Computers
Languages : en
Pages : 470
Book Description
This book is a collection of high-quality research work on cutting-edge technologies and the most-happening areas of computational intelligence and data engineering. It includes selected papers from the International Conference on Computational Intelligence and Data Engineering (ICCIDE 2020). It covers various topics, including collective intelligence, intelligent transportation systems, fuzzy systems, Bayesian network, ant colony optimization, data privacy and security, data mining, data warehousing, big data analytics, cloud computing, natural language processing, swarm intelligence and speech processing.
Publisher: Springer Nature
ISBN: 9811587671
Category : Computers
Languages : en
Pages : 470
Book Description
This book is a collection of high-quality research work on cutting-edge technologies and the most-happening areas of computational intelligence and data engineering. It includes selected papers from the International Conference on Computational Intelligence and Data Engineering (ICCIDE 2020). It covers various topics, including collective intelligence, intelligent transportation systems, fuzzy systems, Bayesian network, ant colony optimization, data privacy and security, data mining, data warehousing, big data analytics, cloud computing, natural language processing, swarm intelligence and speech processing.
Deep Learning Models for Medical Imaging
Author: KC Santosh
Publisher: Academic Press
ISBN: 0128236507
Category : Computers
Languages : en
Pages : 172
Book Description
Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists. - Provides a step-by-step approach to develop deep learning models - Presents case studies showing end-to-end implementation (source codes: available upon request)
Publisher: Academic Press
ISBN: 0128236507
Category : Computers
Languages : en
Pages : 172
Book Description
Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists. - Provides a step-by-step approach to develop deep learning models - Presents case studies showing end-to-end implementation (source codes: available upon request)