Author: David M. Bressoud
Publisher: Cambridge University Press
ISBN: 0521884748
Category : Mathematics
Languages : en
Pages : 15
Book Description
Meant for advanced undergraduate and graduate students in mathematics, this introduction to measure theory and Lebesgue integration is motivated by the historical questions that led to its development. The author tells the story of the mathematicians who wrestled with the difficulties inherent in the Riemann integral, leading to the work of Jordan, Borel, and Lebesgue.
A Radical Approach to Lebesgue's Theory of Integration
Author: David M. Bressoud
Publisher: Cambridge University Press
ISBN: 0521884748
Category : Mathematics
Languages : en
Pages : 15
Book Description
Meant for advanced undergraduate and graduate students in mathematics, this introduction to measure theory and Lebesgue integration is motivated by the historical questions that led to its development. The author tells the story of the mathematicians who wrestled with the difficulties inherent in the Riemann integral, leading to the work of Jordan, Borel, and Lebesgue.
Publisher: Cambridge University Press
ISBN: 0521884748
Category : Mathematics
Languages : en
Pages : 15
Book Description
Meant for advanced undergraduate and graduate students in mathematics, this introduction to measure theory and Lebesgue integration is motivated by the historical questions that led to its development. The author tells the story of the mathematicians who wrestled with the difficulties inherent in the Riemann integral, leading to the work of Jordan, Borel, and Lebesgue.
Lebesgue's Theory of Integration
Author: Thomas Hawkins
Publisher: Chelsea Publishing Company, Incorporated
ISBN: 9780821829639
Category : Mathematics
Languages : en
Pages : 227
Book Description
In this book, Hawkins elegantly places Lebesgue's early work on integration theory within in proper historical context by relating it to the developments during the nineteenth century that motivated it and gave it significance and also to the contributions made in this field by Lebesgue's contemporaries. Hawkins was awarded the 1997 MAA Chauvenet Prize and the 2001 AMS Albert Leon Whiteman Memorial Prize for notable exposition and exceptional scholarship in the history of mathematics.
Publisher: Chelsea Publishing Company, Incorporated
ISBN: 9780821829639
Category : Mathematics
Languages : en
Pages : 227
Book Description
In this book, Hawkins elegantly places Lebesgue's early work on integration theory within in proper historical context by relating it to the developments during the nineteenth century that motivated it and gave it significance and also to the contributions made in this field by Lebesgue's contemporaries. Hawkins was awarded the 1997 MAA Chauvenet Prize and the 2001 AMS Albert Leon Whiteman Memorial Prize for notable exposition and exceptional scholarship in the history of mathematics.
General Integration and Measure
Author: Alan J. Weir
Publisher: CUP Archive
ISBN: 9780521204071
Category : Mathematics
Languages : en
Pages : 316
Book Description
This is a sequel to Dr Weir's undergraduate textbook on Lebesgue Integration and Measure (CUP. 1973) in which he provided a concrete approach to the Lebesgue integral in terms of step functions and went on from there to deduce the abstract concept of Lebesgue measure. In this second volume, the treatment of the Lebesgue integral is generalised to give the Daniell integral and the related general theory of measure. This approach via integration of elementary functions is particularly well adapted to the proof of Riesz's famous theorems about linear functionals on the classical spaces C (X) and LP and also to the study of topological notions such as Borel measure. This book will be used for final year honours courses in pure mathematics and for graduate courses in functional analysis and measure theory.
Publisher: CUP Archive
ISBN: 9780521204071
Category : Mathematics
Languages : en
Pages : 316
Book Description
This is a sequel to Dr Weir's undergraduate textbook on Lebesgue Integration and Measure (CUP. 1973) in which he provided a concrete approach to the Lebesgue integral in terms of step functions and went on from there to deduce the abstract concept of Lebesgue measure. In this second volume, the treatment of the Lebesgue integral is generalised to give the Daniell integral and the related general theory of measure. This approach via integration of elementary functions is particularly well adapted to the proof of Riesz's famous theorems about linear functionals on the classical spaces C (X) and LP and also to the study of topological notions such as Borel measure. This book will be used for final year honours courses in pure mathematics and for graduate courses in functional analysis and measure theory.
Lebesgue Measure and Integration
Author: Frank Burk
Publisher: John Wiley & Sons
ISBN: 1118030982
Category : Mathematics
Languages : en
Pages : 314
Book Description
A superb text on the fundamentals of Lebesgue measure and integration. This book is designed to give the reader a solid understanding of Lebesgue measure and integration. It focuses on only the most fundamental concepts, namely Lebesgue measure for R and Lebesgue integration for extended real-valued functions on R. Starting with a thorough presentation of the preliminary concepts of undergraduate analysis, this book covers all the important topics, including measure theory, measurable functions, and integration. It offers an abundance of support materials, including helpful illustrations, examples, and problems. To further enhance the learning experience, the author provides a historical context that traces the struggle to define "area" and "area under a curve" that led eventually to Lebesgue measure and integration. Lebesgue Measure and Integration is the ideal text for an advanced undergraduate analysis course or for a first-year graduate course in mathematics, statistics, probability, and other applied areas. It will also serve well as a supplement to courses in advanced measure theory and integration and as an invaluable reference long after course work has been completed.
Publisher: John Wiley & Sons
ISBN: 1118030982
Category : Mathematics
Languages : en
Pages : 314
Book Description
A superb text on the fundamentals of Lebesgue measure and integration. This book is designed to give the reader a solid understanding of Lebesgue measure and integration. It focuses on only the most fundamental concepts, namely Lebesgue measure for R and Lebesgue integration for extended real-valued functions on R. Starting with a thorough presentation of the preliminary concepts of undergraduate analysis, this book covers all the important topics, including measure theory, measurable functions, and integration. It offers an abundance of support materials, including helpful illustrations, examples, and problems. To further enhance the learning experience, the author provides a historical context that traces the struggle to define "area" and "area under a curve" that led eventually to Lebesgue measure and integration. Lebesgue Measure and Integration is the ideal text for an advanced undergraduate analysis course or for a first-year graduate course in mathematics, statistics, probability, and other applied areas. It will also serve well as a supplement to courses in advanced measure theory and integration and as an invaluable reference long after course work has been completed.
Lebesgue Integration on Euclidean Space
Author: Frank Jones
Publisher: Jones & Bartlett Learning
ISBN: 9780763717087
Category : Computers
Languages : en
Pages : 626
Book Description
"'Lebesgue Integration on Euclidean Space' contains a concrete, intuitive, and patient derivation of Lebesgue measure and integration on Rn. It contains many exercises that are incorporated throughout the text, enabling the reader to apply immediately the new ideas that have been presented" --
Publisher: Jones & Bartlett Learning
ISBN: 9780763717087
Category : Computers
Languages : en
Pages : 626
Book Description
"'Lebesgue Integration on Euclidean Space' contains a concrete, intuitive, and patient derivation of Lebesgue measure and integration on Rn. It contains many exercises that are incorporated throughout the text, enabling the reader to apply immediately the new ideas that have been presented" --
An Introduction to Lebesgue Integration and Fourier Series
Author: Howard J. Wilcox
Publisher: Courier Corporation
ISBN: 0486137473
Category : Mathematics
Languages : en
Pages : 194
Book Description
This book arose out of the authors' desire to present Lebesgue integration and Fourier series on an undergraduate level, since most undergraduate texts do not cover this material or do so in a cursory way. The result is a clear, concise, well-organized introduction to such topics as the Riemann integral, measurable sets, properties of measurable sets, measurable functions, the Lebesgue integral, convergence and the Lebesgue integral, pointwise convergence of Fourier series and other subjects. The authors not only cover these topics in a useful and thorough way, they have taken pains to motivate the student by keeping the goals of the theory always in sight, justifying each step of the development in terms of those goals. In addition, whenever possible, new concepts are related to concepts already in the student's repertoire. Finally, to enable readers to test their grasp of the material, the text is supplemented by numerous examples and exercises. Mathematics students as well as students of engineering and science will find here a superb treatment, carefully thought out and well presented , that is ideal for a one semester course. The only prerequisite is a basic knowledge of advanced calculus, including the notions of compactness, continuity, uniform convergence and Riemann integration.
Publisher: Courier Corporation
ISBN: 0486137473
Category : Mathematics
Languages : en
Pages : 194
Book Description
This book arose out of the authors' desire to present Lebesgue integration and Fourier series on an undergraduate level, since most undergraduate texts do not cover this material or do so in a cursory way. The result is a clear, concise, well-organized introduction to such topics as the Riemann integral, measurable sets, properties of measurable sets, measurable functions, the Lebesgue integral, convergence and the Lebesgue integral, pointwise convergence of Fourier series and other subjects. The authors not only cover these topics in a useful and thorough way, they have taken pains to motivate the student by keeping the goals of the theory always in sight, justifying each step of the development in terms of those goals. In addition, whenever possible, new concepts are related to concepts already in the student's repertoire. Finally, to enable readers to test their grasp of the material, the text is supplemented by numerous examples and exercises. Mathematics students as well as students of engineering and science will find here a superb treatment, carefully thought out and well presented , that is ideal for a one semester course. The only prerequisite is a basic knowledge of advanced calculus, including the notions of compactness, continuity, uniform convergence and Riemann integration.
Lebesgue Integration
Author: Soo B. Chae
Publisher: Springer Science & Business Media
ISBN: 1461207819
Category : Mathematics
Languages : en
Pages : 275
Book Description
Responses from colleagues and students concerning the first edition indicate that the text still answers a pedagogical need which is not addressed by other texts. There are no major changes in this edition. Several proofs have been tightened, and the exposition has been modified in minor ways for improved clarity. As before, the strength of the text lies in presenting the student with the difficulties which led to the development of the theory and, whenever possi ble, giving the student the tools to overcome those difficulties for himself or herself. Another proverb: Give me a fish, I eat for a day. Teach me to fish, I eat for a lifetime. Soo Bong Chae March 1994 Preface to the First Edition This book was developed from lectures in a course at New College and should be accessible to advanced undergraduate and beginning graduate students. The prerequisites are an understanding of introductory calculus and the ability to comprehend "e-I) arguments. " The study of abstract measure and integration theory has been in vogue for more than two decades in American universities since the publication of Measure Theory by P. R. Halmos (1950). There are, however, very few ele mentary texts from which the interested reader with a calculus background can learn the underlying theory in a form that immediately lends itself to an understanding of the subject. This book is meant to be on a level between calculus and abstract integration theory for students of mathematics and physics.
Publisher: Springer Science & Business Media
ISBN: 1461207819
Category : Mathematics
Languages : en
Pages : 275
Book Description
Responses from colleagues and students concerning the first edition indicate that the text still answers a pedagogical need which is not addressed by other texts. There are no major changes in this edition. Several proofs have been tightened, and the exposition has been modified in minor ways for improved clarity. As before, the strength of the text lies in presenting the student with the difficulties which led to the development of the theory and, whenever possi ble, giving the student the tools to overcome those difficulties for himself or herself. Another proverb: Give me a fish, I eat for a day. Teach me to fish, I eat for a lifetime. Soo Bong Chae March 1994 Preface to the First Edition This book was developed from lectures in a course at New College and should be accessible to advanced undergraduate and beginning graduate students. The prerequisites are an understanding of introductory calculus and the ability to comprehend "e-I) arguments. " The study of abstract measure and integration theory has been in vogue for more than two decades in American universities since the publication of Measure Theory by P. R. Halmos (1950). There are, however, very few ele mentary texts from which the interested reader with a calculus background can learn the underlying theory in a form that immediately lends itself to an understanding of the subject. This book is meant to be on a level between calculus and abstract integration theory for students of mathematics and physics.
A Modern Theory of Integration
Author: Robert G. Bartle
Publisher: American Mathematical Society
ISBN: 147047901X
Category : Mathematics
Languages : en
Pages : 474
Book Description
The theory of integration is one of the twin pillars on which analysis is built. The first version of integration that students see is the Riemann integral. Later, graduate students learn that the Lebesgue integral is ?better? because it removes some restrictions on the integrands and the domains over which we integrate. However, there are still drawbacks to Lebesgue integration, for instance, dealing with the Fundamental Theorem of Calculus, or with ?improper? integrals. This book is an introduction to a relatively new theory of the integral (called the ?generalized Riemann integral? or the ?Henstock-Kurzweil integral?) that corrects the defects in the classical Riemann theory and both simplifies and extends the Lebesgue theory of integration. Although this integral includes that of Lebesgue, its definition is very close to the Riemann integral that is familiar to students from calculus. One virtue of the new approach is that no measure theory and virtually no topology is required. Indeed, the book includes a study of measure theory as an application of the integral. Part 1 fully develops the theory of the integral of functions defined on a compact interval. This restriction on the domain is not necessary, but it is the case of most interest and does not exhibit some of the technical problems that can impede the reader's understanding. Part 2 shows how this theory extends to functions defined on the whole real line. The theory of Lebesgue measure from the integral is then developed, and the author makes a connection with some of the traditional approaches to the Lebesgue integral. Thus, readers are given full exposure to the main classical results. The text is suitable for a first-year graduate course, although much of it can be readily mastered by advanced undergraduate students. Included are many examples and a very rich collection of exercises. There are partial solutions to approximately one-third of the exercises. A complete solutions manual is available separately.
Publisher: American Mathematical Society
ISBN: 147047901X
Category : Mathematics
Languages : en
Pages : 474
Book Description
The theory of integration is one of the twin pillars on which analysis is built. The first version of integration that students see is the Riemann integral. Later, graduate students learn that the Lebesgue integral is ?better? because it removes some restrictions on the integrands and the domains over which we integrate. However, there are still drawbacks to Lebesgue integration, for instance, dealing with the Fundamental Theorem of Calculus, or with ?improper? integrals. This book is an introduction to a relatively new theory of the integral (called the ?generalized Riemann integral? or the ?Henstock-Kurzweil integral?) that corrects the defects in the classical Riemann theory and both simplifies and extends the Lebesgue theory of integration. Although this integral includes that of Lebesgue, its definition is very close to the Riemann integral that is familiar to students from calculus. One virtue of the new approach is that no measure theory and virtually no topology is required. Indeed, the book includes a study of measure theory as an application of the integral. Part 1 fully develops the theory of the integral of functions defined on a compact interval. This restriction on the domain is not necessary, but it is the case of most interest and does not exhibit some of the technical problems that can impede the reader's understanding. Part 2 shows how this theory extends to functions defined on the whole real line. The theory of Lebesgue measure from the integral is then developed, and the author makes a connection with some of the traditional approaches to the Lebesgue integral. Thus, readers are given full exposure to the main classical results. The text is suitable for a first-year graduate course, although much of it can be readily mastered by advanced undergraduate students. Included are many examples and a very rich collection of exercises. There are partial solutions to approximately one-third of the exercises. A complete solutions manual is available separately.
Measure, Integral, Derivative
Author: Sergei Ovchinnikov
Publisher: Springer Science & Business Media
ISBN: 1461471966
Category : Mathematics
Languages : en
Pages : 154
Book Description
This classroom-tested text is intended for a one-semester course in Lebesgue’s theory. With over 180 exercises, the text takes an elementary approach, making it easily accessible to both upper-undergraduate- and lower-graduate-level students. The three main topics presented are measure, integration, and differentiation, and the only prerequisite is a course in elementary real analysis. In order to keep the book self-contained, an introductory chapter is included with the intent to fill the gap between what the student may have learned before and what is required to fully understand the consequent text. Proofs of difficult results, such as the differentiability property of functions of bounded variations, are dissected into small steps in order to be accessible to students. With the exception of a few simple statements, all results are proven in the text. The presentation is elementary, where σ-algebras are not used in the text on measure theory and Dini’s derivatives are not used in the chapter on differentiation. However, all the main results of Lebesgue’s theory are found in the book. http://online.sfsu.edu/sergei/MID.htm
Publisher: Springer Science & Business Media
ISBN: 1461471966
Category : Mathematics
Languages : en
Pages : 154
Book Description
This classroom-tested text is intended for a one-semester course in Lebesgue’s theory. With over 180 exercises, the text takes an elementary approach, making it easily accessible to both upper-undergraduate- and lower-graduate-level students. The three main topics presented are measure, integration, and differentiation, and the only prerequisite is a course in elementary real analysis. In order to keep the book self-contained, an introductory chapter is included with the intent to fill the gap between what the student may have learned before and what is required to fully understand the consequent text. Proofs of difficult results, such as the differentiability property of functions of bounded variations, are dissected into small steps in order to be accessible to students. With the exception of a few simple statements, all results are proven in the text. The presentation is elementary, where σ-algebras are not used in the text on measure theory and Dini’s derivatives are not used in the chapter on differentiation. However, all the main results of Lebesgue’s theory are found in the book. http://online.sfsu.edu/sergei/MID.htm
A (Terse) Introduction to Lebesgue Integration
Author: John M. Franks
Publisher: American Mathematical Soc.
ISBN: 0821848623
Category : Lebesgue integral
Languages : en
Pages : 219
Book Description
Provides a student's first encounter with the concepts of measure theory and functional analysis. This book reflects the belief that difficult concepts should be introduced in their simplest and most concrete forms. It is suitable for an advanced undergraduate course or for the start of a graduate course.
Publisher: American Mathematical Soc.
ISBN: 0821848623
Category : Lebesgue integral
Languages : en
Pages : 219
Book Description
Provides a student's first encounter with the concepts of measure theory and functional analysis. This book reflects the belief that difficult concepts should be introduced in their simplest and most concrete forms. It is suitable for an advanced undergraduate course or for the start of a graduate course.