Author: Lars Diening
Publisher: Springer
ISBN: 3642183638
Category : Mathematics
Languages : en
Pages : 516
Book Description
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
Lebesgue and Sobolev Spaces with Variable Exponents
Author: Lars Diening
Publisher: Springer
ISBN: 3642183638
Category : Mathematics
Languages : en
Pages : 516
Book Description
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
Publisher: Springer
ISBN: 3642183638
Category : Mathematics
Languages : en
Pages : 516
Book Description
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
Lebesgue and Sobolev Spaces with Variable Exponents
Author: Lars Diening
Publisher: Springer Science & Business Media
ISBN: 364218362X
Category : Mathematics
Languages : en
Pages : 516
Book Description
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
Publisher: Springer Science & Business Media
ISBN: 364218362X
Category : Mathematics
Languages : en
Pages : 516
Book Description
The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.
Variable Lebesgue Spaces
Author: David V. Cruz-Uribe
Publisher: Springer Science & Business Media
ISBN: 3034805489
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.
Publisher: Springer Science & Business Media
ISBN: 3034805489
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.
Morrey Spaces
Author: Yoshihiro Sawano
Publisher: CRC Press
ISBN: 1000064077
Category : Mathematics
Languages : en
Pages : 427
Book Description
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
Publisher: CRC Press
ISBN: 1000064077
Category : Mathematics
Languages : en
Pages : 427
Book Description
Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding
Partial Differential Equations with Variable Exponents
Author: Vicentiu D. Radulescu
Publisher: CRC Press
ISBN: 1498703445
Category : Mathematics
Languages : en
Pages : 321
Book Description
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis provides researchers and graduate students with a thorough introduction to the theory of nonlinear partial differential equations (PDEs) with a variable exponent, particularly those of elliptic type. The book presents the most important variational
Publisher: CRC Press
ISBN: 1498703445
Category : Mathematics
Languages : en
Pages : 321
Book Description
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis provides researchers and graduate students with a thorough introduction to the theory of nonlinear partial differential equations (PDEs) with a variable exponent, particularly those of elliptic type. The book presents the most important variational
Microwave Imaging
Author: Matteo Pastorino
Publisher: John Wiley & Sons
ISBN: 0470602473
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging—a technique used in sensing a given scene by means of interrogating microwaves—has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging—including reconstruction procedures and imaging systems and apparatus—enabling the reader to use microwaves for diagnostic purposes in a wide range of applications. This hands-on resource features: A review of the electromagnetic inverse scattering problem formulation, written from an engineering perspective and with notations The most effective reconstruction techniques based on diffracted waves, including time- and frequency-domain methods, as well as deterministic and stochastic space-domain procedures Currently proposed imaging apparatus, aimed at fast and accurate measurements of the scattered field data Insight on near field probes, microwave axial tomographs, and microwave cameras and scanners A discussion of practical applications with detailed descriptions and discussions of several specific examples (e.g., materials evaluation, crack detection, inspection of civil and industrial structures, subsurface detection, and medical applications) A look at emerging techniques and future trends Microwave Imaging is a practical resource for engineers, scientists, researchers, and professors in the fields of civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering.
Publisher: John Wiley & Sons
ISBN: 0470602473
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging—a technique used in sensing a given scene by means of interrogating microwaves—has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging—including reconstruction procedures and imaging systems and apparatus—enabling the reader to use microwaves for diagnostic purposes in a wide range of applications. This hands-on resource features: A review of the electromagnetic inverse scattering problem formulation, written from an engineering perspective and with notations The most effective reconstruction techniques based on diffracted waves, including time- and frequency-domain methods, as well as deterministic and stochastic space-domain procedures Currently proposed imaging apparatus, aimed at fast and accurate measurements of the scattered field data Insight on near field probes, microwave axial tomographs, and microwave cameras and scanners A discussion of practical applications with detailed descriptions and discussions of several specific examples (e.g., materials evaluation, crack detection, inspection of civil and industrial structures, subsurface detection, and medical applications) A look at emerging techniques and future trends Microwave Imaging is a practical resource for engineers, scientists, researchers, and professors in the fields of civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering.
Orlicz Spaces and Generalized Orlicz Spaces
Author: Petteri Harjulehto
Publisher: Springer
ISBN: 303015100X
Category : Mathematics
Languages : en
Pages : 176
Book Description
This book presents a systematic treatment of generalized Orlicz spaces (also known as Musielak–Orlicz spaces) with minimal assumptions on the generating Φ-function. It introduces and develops a technique centered on the use of equivalent Φ-functions. Results from classical functional analysis are presented in detail and new material is included on harmonic analysis. Extrapolation is used to prove, for example, the boundedness of Calderón–Zygmund operators. Finally, central results are provided for Sobolev spaces, including Poincaré and Sobolev–Poincaré inequalities in norm and modular forms. Primarily aimed at researchers and PhD students interested in Orlicz spaces or generalized Orlicz spaces, this book can be used as a basis for advanced graduate courses in analysis.
Publisher: Springer
ISBN: 303015100X
Category : Mathematics
Languages : en
Pages : 176
Book Description
This book presents a systematic treatment of generalized Orlicz spaces (also known as Musielak–Orlicz spaces) with minimal assumptions on the generating Φ-function. It introduces and develops a technique centered on the use of equivalent Φ-functions. Results from classical functional analysis are presented in detail and new material is included on harmonic analysis. Extrapolation is used to prove, for example, the boundedness of Calderón–Zygmund operators. Finally, central results are provided for Sobolev spaces, including Poincaré and Sobolev–Poincaré inequalities in norm and modular forms. Primarily aimed at researchers and PhD students interested in Orlicz spaces or generalized Orlicz spaces, this book can be used as a basis for advanced graduate courses in analysis.
Sobolev Spaces on Metric Measure Spaces
Author: Juha Heinonen
Publisher: Cambridge University Press
ISBN: 1107092345
Category : Mathematics
Languages : en
Pages : 447
Book Description
This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.
Publisher: Cambridge University Press
ISBN: 1107092345
Category : Mathematics
Languages : en
Pages : 447
Book Description
This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.
Lectures on Analysis on Metric Spaces
Author: Juha Heinonen
Publisher: Springer Science & Business Media
ISBN: 9780387951041
Category : Mathematics
Languages : en
Pages : 158
Book Description
The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.
Publisher: Springer Science & Business Media
ISBN: 9780387951041
Category : Mathematics
Languages : en
Pages : 158
Book Description
The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.
Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations
Author: Vicentiu D. Radulescu
Publisher: Hindawi Publishing Corporation
ISBN: 9774540395
Category : Differential equations, Elliptic
Languages : en
Pages : 205
Book Description
This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.
Publisher: Hindawi Publishing Corporation
ISBN: 9774540395
Category : Differential equations, Elliptic
Languages : en
Pages : 205
Book Description
This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.