Author: Humberto Barreto
Publisher: Cambridge University Press
ISBN: 9780521843195
Category : Business & Economics
Languages : en
Pages : 810
Book Description
This highly accessible and innovative text with supporting web site uses Excel (R) to teach the core concepts of econometrics without advanced mathematics. It enables students to use Monte Carlo simulations in order to understand the data generating process and sampling distribution. Intelligent repetition of concrete examples effectively conveys the properties of the ordinary least squares (OLS) estimator and the nature of heteroskedasticity and autocorrelation. Coverage includes omitted variables, binary response models, basic time series, and simultaneous equations. The authors teach students how to construct their own real-world data sets drawn from the internet, which they can analyze with Excel (R) or with other econometric software. The accompanying web site with text support can be found at www.wabash.edu/econometrics.
Introductory Econometrics
Author: Humberto Barreto
Publisher: Cambridge University Press
ISBN: 9780521843195
Category : Business & Economics
Languages : en
Pages : 810
Book Description
This highly accessible and innovative text with supporting web site uses Excel (R) to teach the core concepts of econometrics without advanced mathematics. It enables students to use Monte Carlo simulations in order to understand the data generating process and sampling distribution. Intelligent repetition of concrete examples effectively conveys the properties of the ordinary least squares (OLS) estimator and the nature of heteroskedasticity and autocorrelation. Coverage includes omitted variables, binary response models, basic time series, and simultaneous equations. The authors teach students how to construct their own real-world data sets drawn from the internet, which they can analyze with Excel (R) or with other econometric software. The accompanying web site with text support can be found at www.wabash.edu/econometrics.
Publisher: Cambridge University Press
ISBN: 9780521843195
Category : Business & Economics
Languages : en
Pages : 810
Book Description
This highly accessible and innovative text with supporting web site uses Excel (R) to teach the core concepts of econometrics without advanced mathematics. It enables students to use Monte Carlo simulations in order to understand the data generating process and sampling distribution. Intelligent repetition of concrete examples effectively conveys the properties of the ordinary least squares (OLS) estimator and the nature of heteroskedasticity and autocorrelation. Coverage includes omitted variables, binary response models, basic time series, and simultaneous equations. The authors teach students how to construct their own real-world data sets drawn from the internet, which they can analyze with Excel (R) or with other econometric software. The accompanying web site with text support can be found at www.wabash.edu/econometrics.
Using R for Principles of Econometrics
Author: Constantin Colonescu
Publisher: Lulu.com
ISBN: 1387473611
Category : Business & Economics
Languages : en
Pages : 278
Book Description
This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.
Publisher: Lulu.com
ISBN: 1387473611
Category : Business & Economics
Languages : en
Pages : 278
Book Description
This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.
Heteroskedasticity in Regression
Author: Robert L. Kaufman
Publisher: SAGE Publications, Incorporated
ISBN: 9781452234953
Category : Social Science
Languages : en
Pages : 0
Book Description
Heteroskedasticity in Regression: Detection and Correction, by Robert Kaufman, covers the commonly ignored topic of heteroskedasticity (unequal error variances) in regression analyses and provides a practical guide for how to proceed in terms of testing and correction. Emphasizing how to apply diagnostic tests and corrections for heteroskedasticity in actual data analyses, the monograph offers three approaches for dealing with heteroskedasticity: (1) variance-stabilizing transformations of the dependent variable; (2) calculating robust standard errors, or heteroskedasticity-consistent standard errors; and (3) generalized least squares estimation coefficients and standard errors. The detection and correction of heteroskedasticity is illustrated with three examples that vary in terms of sample size and the types of units analyzed (individuals, households, U.S. states). Intended as a supplementary text for graduate-level courses and a primer for quantitative researchers, the book fills the gap between the limited coverage of heteroskedasticity provided in applied regression textbooks and the more theoretical statistical treatment in advanced econometrics textbooks.
Publisher: SAGE Publications, Incorporated
ISBN: 9781452234953
Category : Social Science
Languages : en
Pages : 0
Book Description
Heteroskedasticity in Regression: Detection and Correction, by Robert Kaufman, covers the commonly ignored topic of heteroskedasticity (unequal error variances) in regression analyses and provides a practical guide for how to proceed in terms of testing and correction. Emphasizing how to apply diagnostic tests and corrections for heteroskedasticity in actual data analyses, the monograph offers three approaches for dealing with heteroskedasticity: (1) variance-stabilizing transformations of the dependent variable; (2) calculating robust standard errors, or heteroskedasticity-consistent standard errors; and (3) generalized least squares estimation coefficients and standard errors. The detection and correction of heteroskedasticity is illustrated with three examples that vary in terms of sample size and the types of units analyzed (individuals, households, U.S. states). Intended as a supplementary text for graduate-level courses and a primer for quantitative researchers, the book fills the gap between the limited coverage of heteroskedasticity provided in applied regression textbooks and the more theoretical statistical treatment in advanced econometrics textbooks.
Applied Regression Analysis and Generalized Linear Models
Author: John Fox
Publisher: SAGE Publications
ISBN: 1483321312
Category : Social Science
Languages : en
Pages : 612
Book Description
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book. Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author′s website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author′s website.
Publisher: SAGE Publications
ISBN: 1483321312
Category : Social Science
Languages : en
Pages : 612
Book Description
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book. Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author′s website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author′s website.
Applied Econometrics with R
Author: Christian Kleiber
Publisher: Springer Science & Business Media
ISBN: 0387773185
Category : Business & Economics
Languages : en
Pages : 229
Book Description
R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Publisher: Springer Science & Business Media
ISBN: 0387773185
Category : Business & Economics
Languages : en
Pages : 229
Book Description
R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
Applied Linear Regression
Author: Sanford Weisberg
Publisher: John Wiley & Sons
ISBN: 1118625951
Category : Mathematics
Languages : en
Pages : 266
Book Description
Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: "I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression." —Technometrics, February 1987 "Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis." —American Scientist, May–June 1987 Applied Linear Regression, Third Edition has been thoroughly updated to help students master the theory and applications of linear regression modeling. Focusing on model building, assessing fit and reliability, and drawing conclusions, the text demonstrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. To facilitate quick learning, the Third Edition stresses the use of graphical methods in an effort to find appropriate models and to better understand them. In that spirit, most analyses and homework problems use graphs for the discovery of structure as well as for the summarization of results. The Third Edition incorporates new material reflecting the latest advances, including: Use of smoothers to summarize a scatterplot Box-Cox and graphical methods for selecting transformations Use of the delta method for inference about complex combinations of parameters Computationally intensive methods and simulation, including the bootstrap method Expanded chapters on nonlinear and logistic regression Completely revised chapters on multiple regression, diagnostics, and generalizations of regression Readers will also find helpful pedagogical tools and learning aids, including: More than 100 exercises, most based on interesting real-world data Web primers demonstrating how to use standard statistical packages, including R, S-Plus®, SPSS®, SAS®, and JMP®, to work all the examples and exercises in the text A free online library for R and S-Plus that makes the methods discussed in the book easy to use With its focus on graphical methods and analysis, coupled with many practical examples and exercises, this is an excellent textbook for upper-level undergraduates and graduate students, who will quickly learn how to use linear regression analysis techniques to solve and gain insight into real-life problems.
Publisher: John Wiley & Sons
ISBN: 1118625951
Category : Mathematics
Languages : en
Pages : 266
Book Description
Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: "I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression." —Technometrics, February 1987 "Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis." —American Scientist, May–June 1987 Applied Linear Regression, Third Edition has been thoroughly updated to help students master the theory and applications of linear regression modeling. Focusing on model building, assessing fit and reliability, and drawing conclusions, the text demonstrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. To facilitate quick learning, the Third Edition stresses the use of graphical methods in an effort to find appropriate models and to better understand them. In that spirit, most analyses and homework problems use graphs for the discovery of structure as well as for the summarization of results. The Third Edition incorporates new material reflecting the latest advances, including: Use of smoothers to summarize a scatterplot Box-Cox and graphical methods for selecting transformations Use of the delta method for inference about complex combinations of parameters Computationally intensive methods and simulation, including the bootstrap method Expanded chapters on nonlinear and logistic regression Completely revised chapters on multiple regression, diagnostics, and generalizations of regression Readers will also find helpful pedagogical tools and learning aids, including: More than 100 exercises, most based on interesting real-world data Web primers demonstrating how to use standard statistical packages, including R, S-Plus®, SPSS®, SAS®, and JMP®, to work all the examples and exercises in the text A free online library for R and S-Plus that makes the methods discussed in the book easy to use With its focus on graphical methods and analysis, coupled with many practical examples and exercises, this is an excellent textbook for upper-level undergraduates and graduate students, who will quickly learn how to use linear regression analysis techniques to solve and gain insight into real-life problems.
Partially Linear Models
Author: Wolfgang Härdle
Publisher: Springer Science & Business Media
ISBN: 3642577008
Category : Mathematics
Languages : en
Pages : 210
Book Description
In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.
Publisher: Springer Science & Business Media
ISBN: 3642577008
Category : Mathematics
Languages : en
Pages : 210
Book Description
In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.
Introduction to Robust Estimation and Hypothesis Testing
Author: Rand R. Wilcox
Publisher: Academic Press
ISBN: 0123869838
Category : Mathematics
Languages : en
Pages : 713
Book Description
"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--
Publisher: Academic Press
ISBN: 0123869838
Category : Mathematics
Languages : en
Pages : 713
Book Description
"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--
Handbook of Reward and Decision Making
Author: Jean-Claude Dreher
Publisher: Academic Press
ISBN: 0080923488
Category : Psychology
Languages : en
Pages : 527
Book Description
This book addresses a fundamental question about the nature of behavior: how does the brain process reward and makes decisions when facing multiple options? The book presents the most recent and compelling lesion, neuroimaging, electrophysiological and computational studies, in combination with hormonal and genetic studies, which have led to a clearer understanding of neural mechanisms behind reward and decision making. The neural bases of reward and decision making processes are of great interest to scientists because of the fundamental role of reward in a number of behavioral processes (such as motivation, learning and cognition) and because of their theoretical and clinical implications for understanding dysfunctions of the dopaminergic system in several neurological and psychiatric disorders (schizophrenia, Parkinson's disease, drug addiction, pathological gambling, ...) - Comprehensive coverage of approaches to studying reward and decision making, including primate neurophysiology and brain imaging studies in healthy humans and in various disorders, genetic and hormonal influences on the reward system and computational models. - Covers clinical implications of process dysfunction (e.g., schizophrenia, Parkinson's disease, eating disorders, drug addiction, pathological gambling) - Uses multiple levels of analysis, from molecular mechanisms to neural systems dynamics and computational models. " This is a very interesting and authoritative handbook by some of the most outstanding investigators in the field of reward and decision making ", Professor Edmund T. Rolls, Oxford Center for Computational Neuroscience, UK
Publisher: Academic Press
ISBN: 0080923488
Category : Psychology
Languages : en
Pages : 527
Book Description
This book addresses a fundamental question about the nature of behavior: how does the brain process reward and makes decisions when facing multiple options? The book presents the most recent and compelling lesion, neuroimaging, electrophysiological and computational studies, in combination with hormonal and genetic studies, which have led to a clearer understanding of neural mechanisms behind reward and decision making. The neural bases of reward and decision making processes are of great interest to scientists because of the fundamental role of reward in a number of behavioral processes (such as motivation, learning and cognition) and because of their theoretical and clinical implications for understanding dysfunctions of the dopaminergic system in several neurological and psychiatric disorders (schizophrenia, Parkinson's disease, drug addiction, pathological gambling, ...) - Comprehensive coverage of approaches to studying reward and decision making, including primate neurophysiology and brain imaging studies in healthy humans and in various disorders, genetic and hormonal influences on the reward system and computational models. - Covers clinical implications of process dysfunction (e.g., schizophrenia, Parkinson's disease, eating disorders, drug addiction, pathological gambling) - Uses multiple levels of analysis, from molecular mechanisms to neural systems dynamics and computational models. " This is a very interesting and authoritative handbook by some of the most outstanding investigators in the field of reward and decision making ", Professor Edmund T. Rolls, Oxford Center for Computational Neuroscience, UK
The Handbook of Metabolic Phenotyping
Author: John C. Lindon
Publisher: Elsevier
ISBN: 0128122943
Category : Science
Languages : en
Pages : 622
Book Description
The Handbook of Metabolic Phenotyping is the definitive work on the rapidly developing subject of metabolic phenotyping. It explores in detail the wide array of analytical chemistry and statistical modeling techniques used in the field, coupled with surveys of the various application areas in human development, nutrition, disease, therapy, and epidemiology to create a comprehensive exploration of the area of study. It covers recent studies that integrate the various -omics data sets to derive a systems biology view. It also addresses current issues on standardization, assay and statistics validation, and data storage and sharing. Written by experts with many years of practice in the field who pioneered many of the approaches widely used today, The Handbook of Metabolic Phenotyping is a valuable resource for postgrads and research scientists studying and furthering the field of metabolomics. - Contains theoretical and practical explanations of all the main analytical chemistry techniques used in metabolic phenotyping - Explores, in detail, the many diverse statistical approaches used in the field - Offers practical tips for successfully conducting metabolic phenotyping studies - Features reviews of all of the various fields of activity relating to human studies
Publisher: Elsevier
ISBN: 0128122943
Category : Science
Languages : en
Pages : 622
Book Description
The Handbook of Metabolic Phenotyping is the definitive work on the rapidly developing subject of metabolic phenotyping. It explores in detail the wide array of analytical chemistry and statistical modeling techniques used in the field, coupled with surveys of the various application areas in human development, nutrition, disease, therapy, and epidemiology to create a comprehensive exploration of the area of study. It covers recent studies that integrate the various -omics data sets to derive a systems biology view. It also addresses current issues on standardization, assay and statistics validation, and data storage and sharing. Written by experts with many years of practice in the field who pioneered many of the approaches widely used today, The Handbook of Metabolic Phenotyping is a valuable resource for postgrads and research scientists studying and furthering the field of metabolomics. - Contains theoretical and practical explanations of all the main analytical chemistry techniques used in metabolic phenotyping - Explores, in detail, the many diverse statistical approaches used in the field - Offers practical tips for successfully conducting metabolic phenotyping studies - Features reviews of all of the various fields of activity relating to human studies