Author: David Fletcher
Publisher: Springer
ISBN: 3662585413
Category : Mathematics
Languages : en
Pages : 112
Book Description
This book provides a concise and accessible overview of model averaging, with a focus on applications. Model averaging is a common means of allowing for model uncertainty when analysing data, and has been used in a wide range of application areas, such as ecology, econometrics, meteorology and pharmacology. The book presents an overview of the methods developed in this area, illustrating many of them with examples from the life sciences involving real-world data. It also includes an extensive list of references and suggestions for further research. Further, it clearly demonstrates the links between the methods developed in statistics, econometrics and machine learning, as well as the connection between the Bayesian and frequentist approaches to model averaging. The book appeals to statisticians and scientists interested in what methods are available, how they differ and what is known about their properties. It is assumed that readers are familiar with the basic concepts of statistical theory and modelling, including probability, likelihood and generalized linear models.
Model Averaging
Author: David Fletcher
Publisher: Springer
ISBN: 3662585413
Category : Mathematics
Languages : en
Pages : 112
Book Description
This book provides a concise and accessible overview of model averaging, with a focus on applications. Model averaging is a common means of allowing for model uncertainty when analysing data, and has been used in a wide range of application areas, such as ecology, econometrics, meteorology and pharmacology. The book presents an overview of the methods developed in this area, illustrating many of them with examples from the life sciences involving real-world data. It also includes an extensive list of references and suggestions for further research. Further, it clearly demonstrates the links between the methods developed in statistics, econometrics and machine learning, as well as the connection between the Bayesian and frequentist approaches to model averaging. The book appeals to statisticians and scientists interested in what methods are available, how they differ and what is known about their properties. It is assumed that readers are familiar with the basic concepts of statistical theory and modelling, including probability, likelihood and generalized linear models.
Publisher: Springer
ISBN: 3662585413
Category : Mathematics
Languages : en
Pages : 112
Book Description
This book provides a concise and accessible overview of model averaging, with a focus on applications. Model averaging is a common means of allowing for model uncertainty when analysing data, and has been used in a wide range of application areas, such as ecology, econometrics, meteorology and pharmacology. The book presents an overview of the methods developed in this area, illustrating many of them with examples from the life sciences involving real-world data. It also includes an extensive list of references and suggestions for further research. Further, it clearly demonstrates the links between the methods developed in statistics, econometrics and machine learning, as well as the connection between the Bayesian and frequentist approaches to model averaging. The book appeals to statisticians and scientists interested in what methods are available, how they differ and what is known about their properties. It is assumed that readers are familiar with the basic concepts of statistical theory and modelling, including probability, likelihood and generalized linear models.
The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics
Author: Jeffrey Racine
Publisher: Oxford University Press
ISBN: 0199857946
Category : Business & Economics
Languages : en
Pages : 562
Book Description
This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures.
Publisher: Oxford University Press
ISBN: 0199857946
Category : Business & Economics
Languages : en
Pages : 562
Book Description
This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures.
Specification Searches
Author: E. E. Leamer
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 392
Book Description
Offers a radically new approach to inference with nonexperimental data when the statistical model is ambiguously defined. Examines the process of model searching and its implications for inference. Identifies six different varieties of specification searches, discussing the inferential consequences of each in detail.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 392
Book Description
Offers a radically new approach to inference with nonexperimental data when the statistical model is ambiguously defined. Examines the process of model searching and its implications for inference. Identifies six different varieties of specification searches, discussing the inferential consequences of each in detail.
Forecasting Financial Time Series Using Model Averaging
Author: Francesco Ravazzolo
Publisher: Rozenberg Publishers
ISBN: 9051709145
Category :
Languages : en
Pages : 198
Book Description
Believing in a single model may be dangerous, and addressing model uncertainty by averaging different models in making forecasts may be very beneficial. In this thesis we focus on forecasting financial time series using model averaging schemes as a way to produce optimal forecasts. We derive and discuss in simulation exercises and empirical applications model averaging techniques that can reproduce stylized facts of financial time series, such as low predictability and time-varying patterns. We emphasize that model averaging is not a "magic" methodology which solves a priori problems of poorly forecasting. Averaging techniques have an essential requirement: individual models have to fit data. In the first section we provide a general outline of the thesis and its contributions to previ ous research. In Chapter 2 we focus on the use of time varying model weight combinations. In Chapter 3, we extend the analysis in the previous chapter to a new Bayesian averaging scheme that models structural instability carefully. In Chapter 4 we focus on forecasting the term structure of U.S. interest rates. In Chapter 5 we attempt to shed more light on forecasting performance of stochastic day-ahead price models. We examine six stochastic price models to forecast day-ahead prices of the two most active power exchanges in the world: the Nordic Power Exchange and the Amsterdam Power Exchange. Three of these forecasting models include weather forecasts. To sum up, the research finds an increase of forecasting power of financial time series when parameter uncertainty, model uncertainty and optimal decision making are included.
Publisher: Rozenberg Publishers
ISBN: 9051709145
Category :
Languages : en
Pages : 198
Book Description
Believing in a single model may be dangerous, and addressing model uncertainty by averaging different models in making forecasts may be very beneficial. In this thesis we focus on forecasting financial time series using model averaging schemes as a way to produce optimal forecasts. We derive and discuss in simulation exercises and empirical applications model averaging techniques that can reproduce stylized facts of financial time series, such as low predictability and time-varying patterns. We emphasize that model averaging is not a "magic" methodology which solves a priori problems of poorly forecasting. Averaging techniques have an essential requirement: individual models have to fit data. In the first section we provide a general outline of the thesis and its contributions to previ ous research. In Chapter 2 we focus on the use of time varying model weight combinations. In Chapter 3, we extend the analysis in the previous chapter to a new Bayesian averaging scheme that models structural instability carefully. In Chapter 4 we focus on forecasting the term structure of U.S. interest rates. In Chapter 5 we attempt to shed more light on forecasting performance of stochastic day-ahead price models. We examine six stochastic price models to forecast day-ahead prices of the two most active power exchanges in the world: the Nordic Power Exchange and the Amsterdam Power Exchange. Three of these forecasting models include weather forecasts. To sum up, the research finds an increase of forecasting power of financial time series when parameter uncertainty, model uncertainty and optimal decision making are included.
Model Selection and Multimodel Inference
Author: Kenneth P. Burnham
Publisher: Springer Science & Business Media
ISBN: 0387224564
Category : Mathematics
Languages : en
Pages : 512
Book Description
A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.
Publisher: Springer Science & Business Media
ISBN: 0387224564
Category : Mathematics
Languages : en
Pages : 512
Book Description
A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.
Growth Slowdowns and the Middle-Income Trap
Author: Mr.Shekhar Aiyar
Publisher: International Monetary Fund
ISBN: 1484315804
Category : Business & Economics
Languages : en
Pages : 64
Book Description
The “middle-income trap” is the phenomenon of hitherto rapidly growing economies stagnating at middle-income levels and failing to graduate into the ranks of high-income countries. In this study we examine the middle-income trap as a special case of growth slowdowns, which are identified as large sudden and sustained deviations from the growth path predicted by a basic conditional convergence framework. We then examine their determinants by means of probit regressions, looking into the role of institutions, demography, infrastructure, the macroeconomic environment, output structure and trade structure. Two variants of Bayesian Model Averaging are used as robustness checks. The results—including some that indeed speak to the special status of middle-income countries—are then used to derive policy implications, with a particular focus on Asian economies.
Publisher: International Monetary Fund
ISBN: 1484315804
Category : Business & Economics
Languages : en
Pages : 64
Book Description
The “middle-income trap” is the phenomenon of hitherto rapidly growing economies stagnating at middle-income levels and failing to graduate into the ranks of high-income countries. In this study we examine the middle-income trap as a special case of growth slowdowns, which are identified as large sudden and sustained deviations from the growth path predicted by a basic conditional convergence framework. We then examine their determinants by means of probit regressions, looking into the role of institutions, demography, infrastructure, the macroeconomic environment, output structure and trade structure. Two variants of Bayesian Model Averaging are used as robustness checks. The results—including some that indeed speak to the special status of middle-income countries—are then used to derive policy implications, with a particular focus on Asian economies.
Selecting Models from Data
Author: P. Cheeseman
Publisher: Springer Science & Business Media
ISBN: 1461226600
Category : Mathematics
Languages : en
Pages : 475
Book Description
This volume is a selection of papers presented at the Fourth International Workshop on Artificial Intelligence and Statistics held in January 1993. These biennial workshops have succeeded in bringing together researchers from Artificial Intelligence and from Statistics to discuss problems of mutual interest. The exchange has broadened research in both fields and has strongly encour aged interdisciplinary work. The theme ofthe 1993 AI and Statistics workshop was: "Selecting Models from Data". The papers in this volume attest to the diversity of approaches to model selection and to the ubiquity of the problem. Both statistics and artificial intelligence have independently developed approaches to model selection and the corresponding algorithms to implement them. But as these papers make clear, there is a high degree of overlap between the different approaches. In particular, there is agreement that the fundamental problem is the avoidence of "overfitting"-Le., where a model fits the given data very closely, but is a poor predictor for new data; in other words, the model has partly fitted the "noise" in the original data.
Publisher: Springer Science & Business Media
ISBN: 1461226600
Category : Mathematics
Languages : en
Pages : 475
Book Description
This volume is a selection of papers presented at the Fourth International Workshop on Artificial Intelligence and Statistics held in January 1993. These biennial workshops have succeeded in bringing together researchers from Artificial Intelligence and from Statistics to discuss problems of mutual interest. The exchange has broadened research in both fields and has strongly encour aged interdisciplinary work. The theme ofthe 1993 AI and Statistics workshop was: "Selecting Models from Data". The papers in this volume attest to the diversity of approaches to model selection and to the ubiquity of the problem. Both statistics and artificial intelligence have independently developed approaches to model selection and the corresponding algorithms to implement them. But as these papers make clear, there is a high degree of overlap between the different approaches. In particular, there is agreement that the fundamental problem is the avoidence of "overfitting"-Le., where a model fits the given data very closely, but is a poor predictor for new data; in other words, the model has partly fitted the "noise" in the original data.
Model Selection and Model Averaging
Author: Gerda Claeskens
Publisher:
ISBN: 9780521852258
Category : Mathematics
Languages : en
Pages : 312
Book Description
First book to synthesize the research and practice from the active field of model selection.
Publisher:
ISBN: 9780521852258
Category : Mathematics
Languages : en
Pages : 312
Book Description
First book to synthesize the research and practice from the active field of model selection.
Elements of Large-Sample Theory
Author: E.L. Lehmann
Publisher: Springer Science & Business Media
ISBN: 0387227296
Category : Mathematics
Languages : en
Pages : 640
Book Description
Written by one of the main figures in twentieth century statistics, this book provides a unified treatment of first-order large-sample theory. It discusses a broad range of applications including introductions to density estimation, the bootstrap, and the asymptotics of survey methodology. The book is written at an elementary level making it accessible to most readers.
Publisher: Springer Science & Business Media
ISBN: 0387227296
Category : Mathematics
Languages : en
Pages : 640
Book Description
Written by one of the main figures in twentieth century statistics, this book provides a unified treatment of first-order large-sample theory. It discusses a broad range of applications including introductions to density estimation, the bootstrap, and the asymptotics of survey methodology. The book is written at an elementary level making it accessible to most readers.
Bayesian Model Selection and Statistical Modeling
Author: Tomohiro Ando
Publisher: CRC Press
ISBN: 9781439836156
Category : Mathematics
Languages : en
Pages : 300
Book Description
Along with many practical applications, Bayesian Model Selection and Statistical Modeling presents an array of Bayesian inference and model selection procedures. It thoroughly explains the concepts, illustrates the derivations of various Bayesian model selection criteria through examples, and provides R code for implementation. The author shows how to implement a variety of Bayesian inference using R and sampling methods, such as Markov chain Monte Carlo. He covers the different types of simulation-based Bayesian model selection criteria, including the numerical calculation of Bayes factors, the Bayesian predictive information criterion, and the deviance information criterion. He also provides a theoretical basis for the analysis of these criteria. In addition, the author discusses how Bayesian model averaging can simultaneously treat both model and parameter uncertainties. Selecting and constructing the appropriate statistical model significantly affect the quality of results in decision making, forecasting, stochastic structure explorations, and other problems. Helping you choose the right Bayesian model, this book focuses on the framework for Bayesian model selection and includes practical examples of model selection criteria.
Publisher: CRC Press
ISBN: 9781439836156
Category : Mathematics
Languages : en
Pages : 300
Book Description
Along with many practical applications, Bayesian Model Selection and Statistical Modeling presents an array of Bayesian inference and model selection procedures. It thoroughly explains the concepts, illustrates the derivations of various Bayesian model selection criteria through examples, and provides R code for implementation. The author shows how to implement a variety of Bayesian inference using R and sampling methods, such as Markov chain Monte Carlo. He covers the different types of simulation-based Bayesian model selection criteria, including the numerical calculation of Bayes factors, the Bayesian predictive information criterion, and the deviance information criterion. He also provides a theoretical basis for the analysis of these criteria. In addition, the author discusses how Bayesian model averaging can simultaneously treat both model and parameter uncertainties. Selecting and constructing the appropriate statistical model significantly affect the quality of results in decision making, forecasting, stochastic structure explorations, and other problems. Helping you choose the right Bayesian model, this book focuses on the framework for Bayesian model selection and includes practical examples of model selection criteria.