Author: Francis Bach
Publisher:
ISBN: 9781601987570
Category : Convex functions
Languages : en
Pages : 228
Book Description
Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions and (2) the Lovász extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In this monograph, we present the theory of submodular functions from a convex analysis perspective, presenting tight links between certain polyhedra, combinatorial optimization and convex optimization problems. In particular, we show how submodular function minimization is equivalent to solving a wide variety of convex optimization problems. This allows the derivation of new efficient algorithms for approximate and exact submodular function minimization with theoretical guarantees and good practical performance. By listing many examples of submodular functions, we review various applications to machine learning, such as clustering, experimental design, sensor placement, graphical model structure learning or subset selection, as well as a family of structured sparsity-inducing norms that can be derived and used from submodular functions.
Learning with Submodular Functions
Author: Francis Bach
Publisher:
ISBN: 9781601987570
Category : Convex functions
Languages : en
Pages : 228
Book Description
Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions and (2) the Lovász extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In this monograph, we present the theory of submodular functions from a convex analysis perspective, presenting tight links between certain polyhedra, combinatorial optimization and convex optimization problems. In particular, we show how submodular function minimization is equivalent to solving a wide variety of convex optimization problems. This allows the derivation of new efficient algorithms for approximate and exact submodular function minimization with theoretical guarantees and good practical performance. By listing many examples of submodular functions, we review various applications to machine learning, such as clustering, experimental design, sensor placement, graphical model structure learning or subset selection, as well as a family of structured sparsity-inducing norms that can be derived and used from submodular functions.
Publisher:
ISBN: 9781601987570
Category : Convex functions
Languages : en
Pages : 228
Book Description
Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions and (2) the Lovász extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In this monograph, we present the theory of submodular functions from a convex analysis perspective, presenting tight links between certain polyhedra, combinatorial optimization and convex optimization problems. In particular, we show how submodular function minimization is equivalent to solving a wide variety of convex optimization problems. This allows the derivation of new efficient algorithms for approximate and exact submodular function minimization with theoretical guarantees and good practical performance. By listing many examples of submodular functions, we review various applications to machine learning, such as clustering, experimental design, sensor placement, graphical model structure learning or subset selection, as well as a family of structured sparsity-inducing norms that can be derived and used from submodular functions.
Submodular Functions and Optimization
Author: Satoru Fujishige
Publisher: Elsevier
ISBN: 008046162X
Category : Mathematics
Languages : en
Pages : 411
Book Description
It has widely been recognized that submodular functions play essential roles in efficiently solvable combinatorial optimization problems. Since the publication of the 1st edition of this book fifteen years ago, submodular functions have been showing further increasing importance in optimization, combinatorics, discrete mathematics, algorithmic computer science, and algorithmic economics, and there have been made remarkable developments of theory and algorithms in submodular functions. The 2nd edition of the book supplements the 1st edition with a lot of remarks and with new two chapters: "Submodular Function Minimization" and "Discrete Convex Analysis." The present 2nd edition is still a unique book on submodular functions, which is essential to students and researchers interested in combinatorial optimization, discrete mathematics, and discrete algorithms in the fields of mathematics, operations research, computer science, and economics. - Self-contained exposition of the theory of submodular functions - Selected up-to-date materials substantial to future developments - Polyhedral description of Discrete Convex Analysis - Full description of submodular function minimization algorithms - Effective insertion of figures - Useful in applied mathematics, operations research, computer science, and economics
Publisher: Elsevier
ISBN: 008046162X
Category : Mathematics
Languages : en
Pages : 411
Book Description
It has widely been recognized that submodular functions play essential roles in efficiently solvable combinatorial optimization problems. Since the publication of the 1st edition of this book fifteen years ago, submodular functions have been showing further increasing importance in optimization, combinatorics, discrete mathematics, algorithmic computer science, and algorithmic economics, and there have been made remarkable developments of theory and algorithms in submodular functions. The 2nd edition of the book supplements the 1st edition with a lot of remarks and with new two chapters: "Submodular Function Minimization" and "Discrete Convex Analysis." The present 2nd edition is still a unique book on submodular functions, which is essential to students and researchers interested in combinatorial optimization, discrete mathematics, and discrete algorithms in the fields of mathematics, operations research, computer science, and economics. - Self-contained exposition of the theory of submodular functions - Selected up-to-date materials substantial to future developments - Polyhedral description of Discrete Convex Analysis - Full description of submodular function minimization algorithms - Effective insertion of figures - Useful in applied mathematics, operations research, computer science, and economics
Combinatorial Optimization -- Eureka, You Shrink!
Author: Michael Jünger
Publisher: Springer
ISBN: 3540364781
Category : Mathematics
Languages : en
Pages : 219
Book Description
This book is dedicated to Jack Edmonds in appreciation of his ground breaking work that laid the foundations for a broad variety of subsequent results achieved in combinatorial optimization.The main part consists of 13 revised full papers on current topics in combinatorial optimization, presented at Aussois 2001, the Fifth Aussois Workshop on Combinatorial Optimization, March 5-9, 2001, and dedicated to Jack Edmonds.Additional highlights in this book are an account of an Aussois 2001 special session dedicated to Jack Edmonds including a speech given by William R. Pulleyblank as well as newly typeset versions of three up-to-now hardly accessible classical papers:- Submodular Functions, Matroids, and Certain Polyhedranbsp;nbsp; by Jack Edmonds- Matching: A Well-Solved Class of Integer Linear Programsnbsp;nbsp; by Jack Edmonds and Ellis L. Johnson- Theoretical Improvements in Algorithmic Efficiency for Network Flow Problemsnbsp;nbsp; by Jack Edmonds and Richard M. Karp.
Publisher: Springer
ISBN: 3540364781
Category : Mathematics
Languages : en
Pages : 219
Book Description
This book is dedicated to Jack Edmonds in appreciation of his ground breaking work that laid the foundations for a broad variety of subsequent results achieved in combinatorial optimization.The main part consists of 13 revised full papers on current topics in combinatorial optimization, presented at Aussois 2001, the Fifth Aussois Workshop on Combinatorial Optimization, March 5-9, 2001, and dedicated to Jack Edmonds.Additional highlights in this book are an account of an Aussois 2001 special session dedicated to Jack Edmonds including a speech given by William R. Pulleyblank as well as newly typeset versions of three up-to-now hardly accessible classical papers:- Submodular Functions, Matroids, and Certain Polyhedranbsp;nbsp; by Jack Edmonds- Matching: A Well-Solved Class of Integer Linear Programsnbsp;nbsp; by Jack Edmonds and Ellis L. Johnson- Theoretical Improvements in Algorithmic Efficiency for Network Flow Problemsnbsp;nbsp; by Jack Edmonds and Richard M. Karp.
Mathematical Programming The State of the Art
Author: A. Bachem
Publisher: Springer Science & Business Media
ISBN: 3642688748
Category : Mathematics
Languages : en
Pages : 662
Book Description
In the late forties, Mathematical Programming became a scientific discipline in its own right. Since then it has experienced a tremendous growth. Beginning with economic and military applications, it is now among the most important fields of applied mathematics with extensive use in engineering, natural sciences, economics, and biological sciences. The lively activity in this area is demonstrated by the fact that as early as 1949 the first "Symposium on Mathe matical Programming" took place in Chicago. Since then mathematical programmers from all over the world have gath ered at the intfrnational symposia of the Mathematical Programming Society roughly every three years to present their recent research, to exchange ideas with their colleagues and to learn about the latest developments in their own and related fields. In 1982, the XI. International Symposium on Mathematical Programming was held at the University of Bonn, W. Germany, from August 23 to 27. It was organized by the Institut fUr Okonometrie und Operations Re search of the University of Bonn in collaboration with the Sonderforschungs bereich 21 of the Deutsche Forschungsgemeinschaft. This volume constitutes part of the outgrowth of this symposium and docu ments its scientific activities. Part I of the book contains information about the symposium, welcoming addresses, lists of committees and sponsors and a brief review about the Ful kerson Prize and the Dantzig Prize which were awarded during the opening ceremony.
Publisher: Springer Science & Business Media
ISBN: 3642688748
Category : Mathematics
Languages : en
Pages : 662
Book Description
In the late forties, Mathematical Programming became a scientific discipline in its own right. Since then it has experienced a tremendous growth. Beginning with economic and military applications, it is now among the most important fields of applied mathematics with extensive use in engineering, natural sciences, economics, and biological sciences. The lively activity in this area is demonstrated by the fact that as early as 1949 the first "Symposium on Mathe matical Programming" took place in Chicago. Since then mathematical programmers from all over the world have gath ered at the intfrnational symposia of the Mathematical Programming Society roughly every three years to present their recent research, to exchange ideas with their colleagues and to learn about the latest developments in their own and related fields. In 1982, the XI. International Symposium on Mathematical Programming was held at the University of Bonn, W. Germany, from August 23 to 27. It was organized by the Institut fUr Okonometrie und Operations Re search of the University of Bonn in collaboration with the Sonderforschungs bereich 21 of the Deutsche Forschungsgemeinschaft. This volume constitutes part of the outgrowth of this symposium and docu ments its scientific activities. Part I of the book contains information about the symposium, welcoming addresses, lists of committees and sponsors and a brief review about the Ful kerson Prize and the Dantzig Prize which were awarded during the opening ceremony.
Evolutionary Learning: Advances in Theories and Algorithms
Author: Zhi-Hua Zhou
Publisher: Springer
ISBN: 9811359563
Category : Computers
Languages : en
Pages : 361
Book Description
Many machine learning tasks involve solving complex optimization problems, such as working on non-differentiable, non-continuous, and non-unique objective functions; in some cases it can prove difficult to even define an explicit objective function. Evolutionary learning applies evolutionary algorithms to address optimization problems in machine learning, and has yielded encouraging outcomes in many applications. However, due to the heuristic nature of evolutionary optimization, most outcomes to date have been empirical and lack theoretical support. This shortcoming has kept evolutionary learning from being well received in the machine learning community, which favors solid theoretical approaches. Recently there have been considerable efforts to address this issue. This book presents a range of those efforts, divided into four parts. Part I briefly introduces readers to evolutionary learning and provides some preliminaries, while Part II presents general theoretical tools for the analysis of running time and approximation performance in evolutionary algorithms. Based on these general tools, Part III presents a number of theoretical findings on major factors in evolutionary optimization, such as recombination, representation, inaccurate fitness evaluation, and population. In closing, Part IV addresses the development of evolutionary learning algorithms with provable theoretical guarantees for several representative tasks, in which evolutionary learning offers excellent performance.
Publisher: Springer
ISBN: 9811359563
Category : Computers
Languages : en
Pages : 361
Book Description
Many machine learning tasks involve solving complex optimization problems, such as working on non-differentiable, non-continuous, and non-unique objective functions; in some cases it can prove difficult to even define an explicit objective function. Evolutionary learning applies evolutionary algorithms to address optimization problems in machine learning, and has yielded encouraging outcomes in many applications. However, due to the heuristic nature of evolutionary optimization, most outcomes to date have been empirical and lack theoretical support. This shortcoming has kept evolutionary learning from being well received in the machine learning community, which favors solid theoretical approaches. Recently there have been considerable efforts to address this issue. This book presents a range of those efforts, divided into four parts. Part I briefly introduces readers to evolutionary learning and provides some preliminaries, while Part II presents general theoretical tools for the analysis of running time and approximation performance in evolutionary algorithms. Based on these general tools, Part III presents a number of theoretical findings on major factors in evolutionary optimization, such as recombination, representation, inaccurate fitness evaluation, and population. In closing, Part IV addresses the development of evolutionary learning algorithms with provable theoretical guarantees for several representative tasks, in which evolutionary learning offers excellent performance.
Algorithms for Convex Optimization
Author: Nisheeth K. Vishnoi
Publisher: Cambridge University Press
ISBN: 1108633994
Category : Computers
Languages : en
Pages : 314
Book Description
In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.
Publisher: Cambridge University Press
ISBN: 1108633994
Category : Computers
Languages : en
Pages : 314
Book Description
In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.
Submodular Functions and Electrical Networks
Author: H. Narayanan
Publisher: Elsevier
ISBN: 0444825231
Category : Computers
Languages : en
Pages : 682
Book Description
There is a strong case for electrical network topologists and submodular function theorists being aware of each other's fields. Presenting a topological approach to electrical network theory, this book demonstrates the strong links that exist between submodular functions and electrical networks. The book contains: . a detailed discussion of graphs, matroids, vector spaces and the algebra of generalized minors, relevant to network analysis (particularly to the construction of efficient circuit simulators) . a detailed discussion of submodular function theory in its own right; topics covered include, various operations, dualization, convolution and Dilworth truncation as well as the related notions of prinicpal partition and principal lattice of partitions. In order to make the book useful to a wide audience, the material on electrical networks and that on submodular functions is presented independently of each other. The hybrid rank problem, the bridge between (topological) electrical network theory and submodular functions, is covered in the final chapter. The emphasis in the book is on low complexity algorithms, particularly based on bipartite graphs. The book is intended for self-study and is recommended to designers of VLSI algorithms. More than 300 problems, almost all of them with solutions, are included at the end of each chapter.
Publisher: Elsevier
ISBN: 0444825231
Category : Computers
Languages : en
Pages : 682
Book Description
There is a strong case for electrical network topologists and submodular function theorists being aware of each other's fields. Presenting a topological approach to electrical network theory, this book demonstrates the strong links that exist between submodular functions and electrical networks. The book contains: . a detailed discussion of graphs, matroids, vector spaces and the algebra of generalized minors, relevant to network analysis (particularly to the construction of efficient circuit simulators) . a detailed discussion of submodular function theory in its own right; topics covered include, various operations, dualization, convolution and Dilworth truncation as well as the related notions of prinicpal partition and principal lattice of partitions. In order to make the book useful to a wide audience, the material on electrical networks and that on submodular functions is presented independently of each other. The hybrid rank problem, the bridge between (topological) electrical network theory and submodular functions, is covered in the final chapter. The emphasis in the book is on low complexity algorithms, particularly based on bipartite graphs. The book is intended for self-study and is recommended to designers of VLSI algorithms. More than 300 problems, almost all of them with solutions, are included at the end of each chapter.
Integer Programming and Combinatorial Optimization
Author: Jon Lee
Publisher: Springer
ISBN: 3319075578
Category : Computers
Languages : en
Pages : 429
Book Description
This book constitutes the refereed proceedings of the 17th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2014, held in Bonn, Germany, in June 2014. The 34 full papers presented were carefully reviewed and selected from 143 submissions. The conference is a forum for researchers and practitioners working on various aspects of integer programming and combinatorial optimization. The aim is to present recent developments in theory, computation, and applications in these areas. The scope of IPCO is viewed in a broad sense, to include algorithmic and structural results in integer programming and combinatorial optimization as well as revealing computational studies and novel applications of discrete optimization to practical problems.
Publisher: Springer
ISBN: 3319075578
Category : Computers
Languages : en
Pages : 429
Book Description
This book constitutes the refereed proceedings of the 17th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2014, held in Bonn, Germany, in June 2014. The 34 full papers presented were carefully reviewed and selected from 143 submissions. The conference is a forum for researchers and practitioners working on various aspects of integer programming and combinatorial optimization. The aim is to present recent developments in theory, computation, and applications in these areas. The scope of IPCO is viewed in a broad sense, to include algorithmic and structural results in integer programming and combinatorial optimization as well as revealing computational studies and novel applications of discrete optimization to practical problems.
Internet and Network Economics
Author: Amin Saberi
Publisher: Springer
ISBN: 3642175724
Category : Computers
Languages : en
Pages : 590
Book Description
This book constitutes the refereed proceedings of the 6th International Workshop on Internet and Network Economics, WINE 2010, held in Stanford, USA, in December 2010. The 52 revised full papers presented were carefully reviewed and selected from 95 submissions. The papers are organized in 33 regular papers and 19 short papers.
Publisher: Springer
ISBN: 3642175724
Category : Computers
Languages : en
Pages : 590
Book Description
This book constitutes the refereed proceedings of the 6th International Workshop on Internet and Network Economics, WINE 2010, held in Stanford, USA, in December 2010. The 52 revised full papers presented were carefully reviewed and selected from 95 submissions. The papers are organized in 33 regular papers and 19 short papers.
Discrete Convex Analysis
Author: Kazuo Murota
Publisher: SIAM
ISBN: 9780898718508
Category : Mathematics
Languages : en
Pages : 411
Book Description
Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.
Publisher: SIAM
ISBN: 9780898718508
Category : Mathematics
Languages : en
Pages : 411
Book Description
Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.