Understanding Machine Learning

Understanding Machine Learning PDF Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
ISBN: 1107057132
Category : Computers
Languages : en
Pages : 415

Get Book Here

Book Description
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Understanding Machine Learning

Understanding Machine Learning PDF Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
ISBN: 1107057132
Category : Computers
Languages : en
Pages : 415

Get Book Here

Book Description
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Mathematics of Neural Networks

Mathematics of Neural Networks PDF Author: Stephen W. Ellacott
Publisher: Springer Science & Business Media
ISBN: 9780792399339
Category : Computers
Languages : en
Pages : 438

Get Book Here

Book Description
This volume of research papers comprises the proceedings of the first International Conference on Mathematics of Neural Networks and Applications (MANNA), which was held at Lady Margaret Hall, Oxford from July 3rd to 7th, 1995 and attended by 116 people. The meeting was strongly supported and, in addition to a stimulating academic programme, it featured a delightful venue, excellent food and accommo dation, a full social programme and fine weather - all of which made for a very enjoyable week. This was the first meeting with this title and it was run under the auspices of the Universities of Huddersfield and Brighton, with sponsorship from the US Air Force (European Office of Aerospace Research and Development) and the London Math ematical Society. This enabled a very interesting and wide-ranging conference pro gramme to be offered. We sincerely thank all these organisations, USAF-EOARD, LMS, and Universities of Huddersfield and Brighton for their invaluable support. The conference organisers were John Mason (Huddersfield) and Steve Ellacott (Brighton), supported by a programme committee consisting of Nigel Allinson (UMIST), Norman Biggs (London School of Economics), Chris Bishop (Aston), David Lowe (Aston), Patrick Parks (Oxford), John Taylor (King's College, Lon don) and Kevin Warwick (Reading). The local organiser from Huddersfield was Ros Hawkins, who took responsibility for much of the administration with great efficiency and energy. The Lady Margaret Hall organisation was led by their bursar, Jeanette Griffiths, who ensured that the week was very smoothly run.

Neural Network Design

Neural Network Design PDF Author: Martin T. Hagan
Publisher:
ISBN: 9789812403766
Category : Neural networks (Computer science)
Languages : en
Pages :

Get Book Here

Book Description


Neuroconstructivism - II

Neuroconstructivism - II PDF Author: Denis Mareschal
Publisher: Oxford University Press
ISBN: 0191660841
Category : Psychology
Languages : en
Pages :

Get Book Here

Book Description
What are the processes, from conception to adulthood, that enable a single cell to grow into a sentient adult? The processes that occur along the way are so complex that any attempt to understand development necessitates a multi-disciplinary approach, integrating data from cognitive studies, computational work, and neuroimaging - an approach till now seldom taken in the study of child development. Neuroconstructivism is a major new 2 volume publication that seeks to redress this balance, presenting an integrative new framework for considering development. Computer and robotic models provide concrete tools for investigating the processes and mechanisms involved in learning and development. Volume 2 illustrates the principles of Neuroconstructivist development, with contributions from 9 different labs across the world. Each of the contributions illustrates how models play a central role in understanding development. The models presented include standard connectionist neural network models as well as multi-agent models. Also included are robotic models emphasizing the need to take embodiment and brain-system interactions seriously. A model of Autism and one of Specific Language Impairment also illustrate how atypical development can be understood in terms of the typical processes of development but operating under restricted conditions. This volume complements Volume 1 by providing concrete examples of how the Neuroconstructivist principles can be grounded within a diverse range of domains, thereby shaping the research agenda in those domains.

Neuroconstructivism: Perspectives and prospects

Neuroconstructivism: Perspectives and prospects PDF Author: Denis Mareschal
Publisher: Oxford University Press
ISBN: 0198529929
Category : Education
Languages : en
Pages : 287

Get Book Here

Book Description
What are the processes, from conception to adulthood, that enable a single cell to grow into a sentient adult? The processes that occur along the way are so complex that any attempt to understand development necessitates a multi-disciplinary approach, integrating data from cognitive studies, computational work, and neuroimaging - an approach till now seldom taken in the study of child development. Neuroconstructivism is a major new 2 volume publication that seeks to redress this balance, presenting an integrative new framework for considering development. Computer and robotic models provide concrete tools for investigating the processes and mechanisms involved in learning and development. Volume 2 illustrates the principles of 'Neuroconstructivist' development, with contributions from 9 different labs across the world. Each of the contributions illustrates how models play a central role in understanding development. The models presented include standard connectionist neural network models as well as multi-agent models. Also included are robotic models emphasizing the need to take embodiment and brain-system interactions seriously. A model of Autism and one of Specific Language Impairment also illustrate how atypical development can be understood in terms of the typical processes of development but operating under restricted conditions. This volume complements Volume 1 by providing concrete examples of how the 'Neuroconstructivist' principles can be grounded within a diverse range of domains, thereby shaping the research agenda in those domains.

Physics Briefs

Physics Briefs PDF Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1420

Get Book Here

Book Description


Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms PDF Author: David J. C. MacKay
Publisher: Cambridge University Press
ISBN: 9780521642989
Category : Computers
Languages : en
Pages : 694

Get Book Here

Book Description
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Algorithmic Aspects of Machine Learning

Algorithmic Aspects of Machine Learning PDF Author: Ankur Moitra
Publisher: Cambridge University Press
ISBN: 1107184584
Category : Computers
Languages : en
Pages : 161

Get Book Here

Book Description
Introduces cutting-edge research on machine learning theory and practice, providing an accessible, modern algorithmic toolkit.

Bio-Mimetic Approaches in Management Science

Bio-Mimetic Approaches in Management Science PDF Author: Jacques-Marie Aurifeille
Publisher: Springer Science & Business Media
ISBN: 1475728212
Category : Business & Economics
Languages : en
Pages : 212

Get Book Here

Book Description
Management Science is often confronted with optimization problems characterised by weak underlying theoretical models and complex constraints. Among them, one finds data analysis, pattern recognition (classification, multidimensional analysis, discriminant analysis) as well as modelling (forecasting, confirmatory analysis, expert system design). In recent years, biomimetic approaches have received growing attention from Marketing, Finance and Human Resource researchers and executives as effective tools for practically handling such problems. Biomimetic approaches include a variety of heuristic methods - such as neural networks, genetic algorithms, immunitary nets, cellular automata - that simulate nature's way of solving complex problems and, thus, can be considered as numerical transpositions of true life problem solving. Bio-Mimetic Approaches in Management Science presents a selection of recent papers on biomimetic approaches and their application to Management Science. Most of these papers were presented at the last ACSEG/CAEMS International Congresses (Approches Connexionnistes en Sciences Economiques et de Gestion/Connectionnist Approaches in Economics and Management Science). All papers combine the discussion of conceptual issues with illustrative empirical applications, and contain detailed information on the way heuristics are practically implemented. The advantages and limits of the biomimetic approaches are discussed in several of the papers, either by comparing these approaches with more classical methods (logit models, clustering), or by investigating specific issues like overfitting and robustness. Synthesizing overviews are provided, as well as new tools for coping with some of the limitations of biomimetic methods.

Neural Networks and Statistical Learning

Neural Networks and Statistical Learning PDF Author: Ke-Lin Du
Publisher: Springer Science & Business Media
ISBN: 1447155718
Category : Technology & Engineering
Languages : en
Pages : 834

Get Book Here

Book Description
Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.