The Data Science Workshop

The Data Science Workshop PDF Author: Anthony So
Publisher: Packt Publishing Ltd
ISBN: 1838983082
Category : Computers
Languages : en
Pages : 817

Get Book Here

Book Description
Cut through the noise and get real results with a step-by-step approach to data science Key Features Ideal for the data science beginner who is getting started for the first time A data science tutorial with step-by-step exercises and activities that help build key skills Structured to let you progress at your own pace, on your own terms Use your physical print copy to redeem free access to the online interactive edition Book DescriptionYou already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead.What you will learn Find out the key differences between supervised and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Learn about different algorithms such as regression, classification, and clustering Discover advanced techniques to improve model ensembling and accuracy Speed up the process of creating new features with automated feature tool Simplify machine learning using open source Python packages Who this book is forOur goal at Packt is to help you be successful, in whatever it is you choose to do. The Data Science Workshop is an ideal data science tutorial for the data science beginner who is just getting started. Pick up a Workshop today and let Packt help you develop skills that stick with you for life.

The Data Science Workshop

The Data Science Workshop PDF Author: Anthony So
Publisher: Packt Publishing Ltd
ISBN: 1838983082
Category : Computers
Languages : en
Pages : 817

Get Book Here

Book Description
Cut through the noise and get real results with a step-by-step approach to data science Key Features Ideal for the data science beginner who is getting started for the first time A data science tutorial with step-by-step exercises and activities that help build key skills Structured to let you progress at your own pace, on your own terms Use your physical print copy to redeem free access to the online interactive edition Book DescriptionYou already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead.What you will learn Find out the key differences between supervised and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Learn about different algorithms such as regression, classification, and clustering Discover advanced techniques to improve model ensembling and accuracy Speed up the process of creating new features with automated feature tool Simplify machine learning using open source Python packages Who this book is forOur goal at Packt is to help you be successful, in whatever it is you choose to do. The Data Science Workshop is an ideal data science tutorial for the data science beginner who is just getting started. Pick up a Workshop today and let Packt help you develop skills that stick with you for life.

Python for Data Science For Dummies

Python for Data Science For Dummies PDF Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 1394213093
Category : Computers
Languages : en
Pages : 471

Get Book Here

Book Description
Let Python do the heavy lifting for you as you analyze large datasets Python for Data Science For Dummies lets you get your hands dirty with data using one of the top programming languages. This beginner’s guide takes you step by step through getting started, performing data analysis, understanding datasets and example code, working with Google Colab, sampling data, and beyond. Coding your data analysis tasks will make your life easier, make you more in-demand as an employee, and open the door to valuable knowledge and insights. This new edition is updated for the latest version of Python and includes current, relevant data examples. Get a firm background in the basics of Python coding for data analysis Learn about data science careers you can pursue with Python coding skills Integrate data analysis with multimedia and graphics Manage and organize data with cloud-based relational databases Python careers are on the rise. Grab this user-friendly Dummies guide and gain the programming skills you need to become a data pro.

Statistical and Machine-Learning Data Mining:

Statistical and Machine-Learning Data Mining: PDF Author: Bruce Ratner
Publisher: CRC Press
ISBN: 1351652389
Category : Computers
Languages : en
Pages : 849

Get Book Here

Book Description
Interest in predictive analytics of big data has grown exponentially in the four years since the publication of Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data, Second Edition. In the third edition of this bestseller, the author has completely revised, reorganized, and repositioned the original chapters and produced 13 new chapters of creative and useful machine-learning data mining techniques. In sum, the 43 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. What is new in the Third Edition: The current chapters have been completely rewritten. The core content has been extended with strategies and methods for problems drawn from the top predictive analytics conference and statistical modeling workshops. Adds thirteen new chapters including coverage of data science and its rise, market share estimation, share of wallet modeling without survey data, latent market segmentation, statistical regression modeling that deals with incomplete data, decile analysis assessment in terms of the predictive power of the data, and a user-friendly version of text mining, not requiring an advanced background in natural language processing (NLP). Includes SAS subroutines which can be easily converted to other languages. As in the previous edition, this book offers detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. The author addresses each methodology and assigns its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.

Introduction to Data Science

Introduction to Data Science PDF Author: Laura Igual
Publisher: Springer
ISBN: 3319500171
Category : Computers
Languages : en
Pages : 227

Get Book Here

Book Description
This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.

Data Science and Its Applications

Data Science and Its Applications PDF Author: Aakanksha Sharaff
Publisher: CRC Press
ISBN: 1000414000
Category : Computers
Languages : en
Pages : 443

Get Book Here

Book Description
The term "data" being mostly used, experimented, analyzed, and researched, "Data Science and its Applications" finds relevance in all domains of research studies including science, engineering, technology, management, mathematics, and many more in wide range of applications such as sentiment analysis, social medial analytics, signal processing, gene analysis, market analysis, healthcare, bioinformatics etc. The book on Data Science and its applications discusses about data science overview, scientific methods, data processing, extraction of meaningful information from data, and insight for developing the concept from different domains, highlighting mathematical and statistical models, operations research, computer programming, machine learning, data visualization, pattern recognition and others. The book also highlights data science implementation and evaluation of performance in several emerging applications such as information retrieval, cognitive science, healthcare, and computer vision. The data analysis covers the role of data science depicting different types of data such as text, image, biomedical signal etc. useful for a wide range of real time applications. The salient features of the book are: Overview, Challenges and Opportunities in Data Science and Real Time Applications Addressing Big Data Issues Useful Machine Learning Methods Disease Detection and Healthcare Applications utilizing Data Science Concepts and Deep Learning Applications in Stock Market, Education, Behavior Analysis, Image Captioning, Gene Analysis and Scene Text Analysis Data Optimization Due to multidisciplinary applications of data science concepts, the book is intended for wide range of readers that include Data Scientists, Big Data Analysists, Research Scholars engaged in Data Science and Machine Learning applications.

Data Science in Chemistry

Data Science in Chemistry PDF Author: Thorsten Gressling
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110630532
Category : Technology & Engineering
Languages : en
Pages : 435

Get Book Here

Book Description
The ever-growing wealth of information has led to the emergence of a fourth paradigm of science. This new field of activity – data science – includes computer science, mathematics and a given specialist domain. This book focuses on chemistry, explaining how to use data science for deep insights and take chemical research and engineering to the next level. It covers modern aspects like Big Data, Artificial Intelligence and Quantum computing.

Learn Python

Learn Python PDF Author: Anthony Adams
Publisher: Anthony Adams
ISBN:
Category : Computers
Languages : en
Pages : 183

Get Book Here

Book Description
Do you want to become a coding & programming expert in no time? This guide will teach you how! Are you interested in coding, programming, and artificial intelligence? Would you like to learn Python, but you have no idea how to start? This guide is the answer to all your problems! Python is one of the top 10 popular programming languages, and it can be used to developing desktop GUI applications, websites, and web applications. There are many reasons why learning Python is essential. The syntax rules of Python allow you to express concepts without writing additional code. At the same time, Python, unlike other programming languages, emphasizes code readability and will enable you to use English keywords instead of punctuations. Then, Python has an extensive and robust standard library, which makes it score over other programming languages. Besides, it is an open-source programming language, meaning that it will help you curtail software development cost significantly. Last but not least, Python is designed with features to facilitate data analysis and visualization. You can use it to create custom big data solutions without putting in extra time and effort. Are you excited about learning more about Python and coding? Here is what you can learn from this book: • The importance of data analysis and machine learning • How is Python different from other languages • Learn from more than 25 Python programming examples • All the benefits of learning Python • How can Python help you out with learning other languages Learning Python is easy, even if you’ve never learned about coding before. It offers excellent readability and simple-to-learn syntax, which helps beginners learn this programming language in no time! The software is user-friendly and designed to increase speed and productivity during programming. With Python, you can create any app you want to! Ready to start coding? This book will teach you how to do it and guide you through the coding process! Scroll up, click on "Buy", and Get Your Copy Now!

Hands-On Data Science for Librarians

Hands-On Data Science for Librarians PDF Author: Sarah Lin
Publisher: CRC Press
ISBN: 1000863174
Category : Business & Economics
Languages : en
Pages : 199

Get Book Here

Book Description
Librarians understand the need to store, use and analyze data related to their collection, patrons and institution, and there has been consistent interest over the last 10 years to improve data management, analysis, and visualization skills within the profession. However, librarians find it difficult to move from out-of-the-box proprietary software applications to the skills necessary to perform the range of data science actions in code. This book will focus on teaching R through relevant examples and skills that librarians need in their day-to-day lives that includes visualizations but goes much further to include web scraping, working with maps, creating interactive reports, machine learning, and others. While there’s a place for theory, ethics, and statistical methods, librarians need a tool to help them acquire enough facility with R to utilize data science skills in their daily work, no matter what type of library they work at (academic, public or special). By walking through each skill and its application to library work before walking the reader through each line of code, this book will support librarians who want to apply data science in their daily work. Hands-On Data Science for Librarians is intended for librarians (and other information professionals) in any library type (public, academic or special) as well as graduate students in library and information science (LIS). Key Features: Only data science book available geared toward librarians that includes step-by-step code examples Examples include all library types (public, academic, special) Relevant datasets Accessible to non-technical professionals Focused on job skills and their applications

Research Methods in Learning Design and Technology

Research Methods in Learning Design and Technology PDF Author: Enilda Romero-Hall
Publisher: Routledge
ISBN: 0429523033
Category : Education
Languages : en
Pages : 247

Get Book Here

Book Description
Research Methods in Learning Design and Technology explores the many forms, both new and established, that research takes within the field of instructional design and technology (IDT). Chapters by experienced IDT researchers address methodologies such as meta-analysis, social media research, user experience design research, eye-tracking research, and phenomenology, situating each approach within the broader context of how IDT research has evolved and continues to evolve over time. This comprehensive, up-to-date volume familiarizes graduate students, faculty, and instructional design practitioners with the full spectrum of approaches available for investigating the new and changing educational landscapes. The book also discusses the history and prospective future of research methodologies in the IDT field.

Handbook of Research on Opinion Mining and Text Analytics on Literary Works and Social Media

Handbook of Research on Opinion Mining and Text Analytics on Literary Works and Social Media PDF Author: Keikhosrokiani, Pantea
Publisher: IGI Global
ISBN: 1799895963
Category : Computers
Languages : en
Pages : 462

Get Book Here

Book Description
Opinion mining and text analytics are used widely across numerous disciplines and fields in today’s society to provide insight into people’s thoughts, feelings, and stances. This data is incredibly valuable and can be utilized for a range of purposes. As such, an in-depth look into how opinion mining and text analytics correlate with social media and literature is necessary to better understand audiences. The Handbook of Research on Opinion Mining and Text Analytics on Literary Works and Social Media introduces the use of artificial intelligence and big data analytics applied to opinion mining and text analytics on literary works and social media. It also focuses on theories, methods, and approaches in which data analysis techniques can be used to analyze data to provide a meaningful pattern. Covering a wide range of topics such as sentiment analysis and stance detection, this publication is ideal for lecturers, researchers, academicians, practitioners, and students.