Author: P. Morettin
Publisher: IOS Press
ISBN: 1643682679
Category : Computers
Languages : en
Pages : 112
Book Description
Artificial intelligence often has to deal with uncertain scenarios, such as a partially observed environment or noisy observations. Traditional probabilistic models, while being very principled approaches in these contexts, are incapable of dealing with both algebraic and logical constraints. Existing hybrid continuous/discrete models are typically limited in expressivity, or do not offer any guarantee on the approximation errors. This book, Learning and Reasoning in Hybrid Structured Spaces, discusses a recent and general formalism called Weighted Model Integration (WMI), which enables probabilistic modeling and inference in hybrid structured domains. WMI-based inference algorithms differ with respect to most alternatives in that probabilities are computed inside a structured support involving both logical and algebraic relationships between variables. While the research in this area is at an early stage, we are witnessing an increasing interest in the study and development of scalable inference procedures and effective learning algorithms in this setting. This book details some of the most impactful contributions in context of WMI-based inference in the last 5 years. Moreover, by providing a gentle introduction to the main concepts related to WMI, the book can be useful for both theoretical researchers and practitioners alike.
Learning and Reasoning in Hybrid Structured Spaces
Author: P. Morettin
Publisher: IOS Press
ISBN: 1643682679
Category : Computers
Languages : en
Pages : 112
Book Description
Artificial intelligence often has to deal with uncertain scenarios, such as a partially observed environment or noisy observations. Traditional probabilistic models, while being very principled approaches in these contexts, are incapable of dealing with both algebraic and logical constraints. Existing hybrid continuous/discrete models are typically limited in expressivity, or do not offer any guarantee on the approximation errors. This book, Learning and Reasoning in Hybrid Structured Spaces, discusses a recent and general formalism called Weighted Model Integration (WMI), which enables probabilistic modeling and inference in hybrid structured domains. WMI-based inference algorithms differ with respect to most alternatives in that probabilities are computed inside a structured support involving both logical and algebraic relationships between variables. While the research in this area is at an early stage, we are witnessing an increasing interest in the study and development of scalable inference procedures and effective learning algorithms in this setting. This book details some of the most impactful contributions in context of WMI-based inference in the last 5 years. Moreover, by providing a gentle introduction to the main concepts related to WMI, the book can be useful for both theoretical researchers and practitioners alike.
Publisher: IOS Press
ISBN: 1643682679
Category : Computers
Languages : en
Pages : 112
Book Description
Artificial intelligence often has to deal with uncertain scenarios, such as a partially observed environment or noisy observations. Traditional probabilistic models, while being very principled approaches in these contexts, are incapable of dealing with both algebraic and logical constraints. Existing hybrid continuous/discrete models are typically limited in expressivity, or do not offer any guarantee on the approximation errors. This book, Learning and Reasoning in Hybrid Structured Spaces, discusses a recent and general formalism called Weighted Model Integration (WMI), which enables probabilistic modeling and inference in hybrid structured domains. WMI-based inference algorithms differ with respect to most alternatives in that probabilities are computed inside a structured support involving both logical and algebraic relationships between variables. While the research in this area is at an early stage, we are witnessing an increasing interest in the study and development of scalable inference procedures and effective learning algorithms in this setting. This book details some of the most impactful contributions in context of WMI-based inference in the last 5 years. Moreover, by providing a gentle introduction to the main concepts related to WMI, the book can be useful for both theoretical researchers and practitioners alike.
Deep Learning with Relational Logic Representations
Author: G. Šír
Publisher: IOS Press
ISBN: 1643683438
Category : Computers
Languages : en
Pages : 239
Book Description
Deep learning has been used with great success in a number of diverse applications, ranging from image processing to game playing, and the fast progress of this learning paradigm has even been seen as paving the way towards general artificial intelligence. However, the current deep learning models are still principally limited in many ways. This book, ‘Deep Learning with Relational Logic Representations’, addresses the limited expressiveness of the common tensor-based learning representation used in standard deep learning, by generalizing it to relational representations based in mathematical logic. This is the natural formalism for the relational data omnipresent in the interlinked structures of the Internet and relational databases, as well as for the background knowledge often present in the form of relational rules and constraints. These are impossible to properly exploit with standard neural networks, but the book introduces a new declarative deep relational learning framework called Lifted Relational Neural Networks, which generalizes the standard deep learning models into the relational setting by means of a ‘lifting’ paradigm, known from Statistical Relational Learning. The author explains how this approach allows for effective end-to-end deep learning with relational data and knowledge, introduces several enhancements and optimizations to the framework, and demonstrates its expressiveness with various novel deep relational learning concepts, including efficient generalizations of popular contemporary models, such as Graph Neural Networks. Demonstrating the framework across various learning scenarios and benchmarks, including computational efficiency, the book will be of interest to all those interested in the theory and practice of advancing representations of modern deep learning architectures.
Publisher: IOS Press
ISBN: 1643683438
Category : Computers
Languages : en
Pages : 239
Book Description
Deep learning has been used with great success in a number of diverse applications, ranging from image processing to game playing, and the fast progress of this learning paradigm has even been seen as paving the way towards general artificial intelligence. However, the current deep learning models are still principally limited in many ways. This book, ‘Deep Learning with Relational Logic Representations’, addresses the limited expressiveness of the common tensor-based learning representation used in standard deep learning, by generalizing it to relational representations based in mathematical logic. This is the natural formalism for the relational data omnipresent in the interlinked structures of the Internet and relational databases, as well as for the background knowledge often present in the form of relational rules and constraints. These are impossible to properly exploit with standard neural networks, but the book introduces a new declarative deep relational learning framework called Lifted Relational Neural Networks, which generalizes the standard deep learning models into the relational setting by means of a ‘lifting’ paradigm, known from Statistical Relational Learning. The author explains how this approach allows for effective end-to-end deep learning with relational data and knowledge, introduces several enhancements and optimizations to the framework, and demonstrates its expressiveness with various novel deep relational learning concepts, including efficient generalizations of popular contemporary models, such as Graph Neural Networks. Demonstrating the framework across various learning scenarios and benchmarks, including computational efficiency, the book will be of interest to all those interested in the theory and practice of advancing representations of modern deep learning architectures.
Exploiting Environment Configurability in Reinforcement Learning
Author: A.M. Metelli
Publisher: IOS Press
ISBN: 1643683632
Category : Computers
Languages : en
Pages : 377
Book Description
In recent decades, Reinforcement Learning (RL) has emerged as an effective approach to address complex control tasks. In a Markov Decision Process (MDP), the framework typically used, the environment is assumed to be a fixed entity that cannot be altered externally. There are, however, several real-world scenarios in which the environment can be modified to a limited extent. This book, Exploiting Environment Configurability in Reinforcement Learning, aims to formalize and study diverse aspects of environment configuration. In a traditional MDP, the agent perceives the state of the environment and performs actions. As a consequence, the environment transitions to a new state and generates a reward signal. The goal of the agent consists of learning a policy, i.e., a prescription of actions that maximize the long-term reward. Although environment configuration arises quite often in real applications, the topic is very little explored in the literature. The contributions in the book are theoretical, algorithmic, and experimental and can be broadly subdivided into three parts. The first part introduces the novel formalism of Configurable Markov Decision Processes (Conf-MDPs) to model the configuration opportunities offered by the environment. The second part of the book focuses on the cooperative Conf-MDP setting and investigates the problem of finding an agent policy and an environment configuration that jointly optimize the long-term reward. The third part addresses two specific applications of the Conf-MDP framework: policy space identification and control frequency adaptation. The book will be of interest to all those using RL as part of their work.
Publisher: IOS Press
ISBN: 1643683632
Category : Computers
Languages : en
Pages : 377
Book Description
In recent decades, Reinforcement Learning (RL) has emerged as an effective approach to address complex control tasks. In a Markov Decision Process (MDP), the framework typically used, the environment is assumed to be a fixed entity that cannot be altered externally. There are, however, several real-world scenarios in which the environment can be modified to a limited extent. This book, Exploiting Environment Configurability in Reinforcement Learning, aims to formalize and study diverse aspects of environment configuration. In a traditional MDP, the agent perceives the state of the environment and performs actions. As a consequence, the environment transitions to a new state and generates a reward signal. The goal of the agent consists of learning a policy, i.e., a prescription of actions that maximize the long-term reward. Although environment configuration arises quite often in real applications, the topic is very little explored in the literature. The contributions in the book are theoretical, algorithmic, and experimental and can be broadly subdivided into three parts. The first part introduces the novel formalism of Configurable Markov Decision Processes (Conf-MDPs) to model the configuration opportunities offered by the environment. The second part of the book focuses on the cooperative Conf-MDP setting and investigates the problem of finding an agent policy and an environment configuration that jointly optimize the long-term reward. The third part addresses two specific applications of the Conf-MDP framework: policy space identification and control frequency adaptation. The book will be of interest to all those using RL as part of their work.
Computational Models of Argument
Author: F. Toni
Publisher: IOS Press
ISBN: 1643683071
Category : Computers
Languages : en
Pages : 400
Book Description
Argumentation has traditionally been studied across a number of fields, notably philosophy, cognitive science, linguistics and jurisprudence. The study of computational models of argumentation is a more recent endeavor, bringing together researchers from traditional fields and computer science and engineering within a rich, interdisciplinary matrix. Computational models of argumentation have been identified and used since the 1980s, and more recently an important role for argumentation in leading to principled decisions has emerged in several settings. This book presents the proceedings of COMMA 2022 the 9th International Conference on Computational Models of Argument, held in Cardiff, Wales, United Kingdom, during 14 - 16 September 2022. The book contains 27 regular papers and 16 demo papers from a total of 75 submissions, as well as 3 invited talks from Prof Paul Dunne (University of Liverpool), Prof Iryna Gurevych (TU Darmstadt), and Prof Antonis Kakas (University of Cyprus), which reflect the diverse nature of the field. Papers are a mix of theoretical and practical contributions; theoretical contributions include new formal models, the study of formal or computational properties of models, design for implemented systems and experimental research; practical papers include applications to law, machine learning and explainability. Abstract and structured accounts of argumentation are covered, as are relations between different accounts. Many papers focus on the evaluation of arguments or their conclusions given a body of arguments, with a continuation of a recent trend to study gradual or probabilistic notions of evaluation. The book offers an overview of recent and current research and will be of interest to all those working with computational models of argumentation.
Publisher: IOS Press
ISBN: 1643683071
Category : Computers
Languages : en
Pages : 400
Book Description
Argumentation has traditionally been studied across a number of fields, notably philosophy, cognitive science, linguistics and jurisprudence. The study of computational models of argumentation is a more recent endeavor, bringing together researchers from traditional fields and computer science and engineering within a rich, interdisciplinary matrix. Computational models of argumentation have been identified and used since the 1980s, and more recently an important role for argumentation in leading to principled decisions has emerged in several settings. This book presents the proceedings of COMMA 2022 the 9th International Conference on Computational Models of Argument, held in Cardiff, Wales, United Kingdom, during 14 - 16 September 2022. The book contains 27 regular papers and 16 demo papers from a total of 75 submissions, as well as 3 invited talks from Prof Paul Dunne (University of Liverpool), Prof Iryna Gurevych (TU Darmstadt), and Prof Antonis Kakas (University of Cyprus), which reflect the diverse nature of the field. Papers are a mix of theoretical and practical contributions; theoretical contributions include new formal models, the study of formal or computational properties of models, design for implemented systems and experimental research; practical papers include applications to law, machine learning and explainability. Abstract and structured accounts of argumentation are covered, as are relations between different accounts. Many papers focus on the evaluation of arguments or their conclusions given a body of arguments, with a continuation of a recent trend to study gradual or probabilistic notions of evaluation. The book offers an overview of recent and current research and will be of interest to all those working with computational models of argumentation.
PAIS 2022
Author: A. Passerini
Publisher: IOS Press
ISBN: 1643682954
Category : Computers
Languages : en
Pages : 172
Book Description
Artificial Intelligence (AI) is a central topic in contemporary computer science; one which has enabled many groundbreaking developments that have significantly influenced our society. Not only has it proved to be of fundamental importance in areas such as medicine, biology, economics, philosophy, linguistics, psychology and engineering, but it has also had a significant impact in a number of fields, including e-commerce, tourism, e-government, national security, manufacturing and other economic sectors. This book contains the proceedings of PAIS 2022, the 11th Conference on Prestigious Applications of Artificial Intelligence, held in Vienna, Austria, on 25 July 2022 as a satellite event of IJCAI-ECAI 2022. The PAIS conference invites papers describing innovative applications of AI techniques to real-world systems and problems, and aims to provide a forum for academic and industrial researchers and practitioners to share their experience and insight on the applicability, development and deployment of intelligent systems. A total of 18 full-paper submissions and 4 extended-abstract submissions were received for the 2022 conference, of which 10 full papers and 3 extended abstracts were accepted after rigorous peer review. The topics covered range from autonomous navigation, air traffic control and satellite management to the optimization of industrial processes and human-in-the-loop applications. The book will be of interest to all those whose work involves the innovative application of AI techniques to real-world situations.
Publisher: IOS Press
ISBN: 1643682954
Category : Computers
Languages : en
Pages : 172
Book Description
Artificial Intelligence (AI) is a central topic in contemporary computer science; one which has enabled many groundbreaking developments that have significantly influenced our society. Not only has it proved to be of fundamental importance in areas such as medicine, biology, economics, philosophy, linguistics, psychology and engineering, but it has also had a significant impact in a number of fields, including e-commerce, tourism, e-government, national security, manufacturing and other economic sectors. This book contains the proceedings of PAIS 2022, the 11th Conference on Prestigious Applications of Artificial Intelligence, held in Vienna, Austria, on 25 July 2022 as a satellite event of IJCAI-ECAI 2022. The PAIS conference invites papers describing innovative applications of AI techniques to real-world systems and problems, and aims to provide a forum for academic and industrial researchers and practitioners to share their experience and insight on the applicability, development and deployment of intelligent systems. A total of 18 full-paper submissions and 4 extended-abstract submissions were received for the 2022 conference, of which 10 full papers and 3 extended abstracts were accepted after rigorous peer review. The topics covered range from autonomous navigation, air traffic control and satellite management to the optimization of industrial processes and human-in-the-loop applications. The book will be of interest to all those whose work involves the innovative application of AI techniques to real-world situations.
Advanced Tools and Methods for Treewidth-Based Problem Solving
Author: M. Hecher
Publisher: IOS Press
ISBN: 1643683454
Category : Computers
Languages : en
Pages : 252
Book Description
This book, Advanced Tools and Methods for Treewidth-Based Problem Solving, contains selected results from the author’s PhD studies, which were carried out from 2015 to 2021. For his PhD thesis, Markus Hecher received the EurAI Dissertation Award 2021 and the GI Dissertation Award 2021, amongst others. The aim of the book is to present a new toolkit for using the structural parameter of treewidth to solve problems in knowledge representation and reasoning (KR) and artificial intelligence (AI), thereby establishing both theoretical upper and lower bounds, as well as methods to deal with treewidth efficiently in practice. The key foundations outlined in the book provide runtime lower bounds – under reasonable assumptions in computational complexity – for evaluating quantified Boolean formulas and logic programs which match the known upper bounds already published in 2004 and 2009. The general nature of the developed tools and techniques means that a wide applicability beyond the selected problems and formalisms tackled in the book is anticipated, and it is hoped that the book will serve as a starting point for future theoretical and practical investigations, which will no doubt establish further results and gain deeper insights.
Publisher: IOS Press
ISBN: 1643683454
Category : Computers
Languages : en
Pages : 252
Book Description
This book, Advanced Tools and Methods for Treewidth-Based Problem Solving, contains selected results from the author’s PhD studies, which were carried out from 2015 to 2021. For his PhD thesis, Markus Hecher received the EurAI Dissertation Award 2021 and the GI Dissertation Award 2021, amongst others. The aim of the book is to present a new toolkit for using the structural parameter of treewidth to solve problems in knowledge representation and reasoning (KR) and artificial intelligence (AI), thereby establishing both theoretical upper and lower bounds, as well as methods to deal with treewidth efficiently in practice. The key foundations outlined in the book provide runtime lower bounds – under reasonable assumptions in computational complexity – for evaluating quantified Boolean formulas and logic programs which match the known upper bounds already published in 2004 and 2009. The general nature of the developed tools and techniques means that a wide applicability beyond the selected problems and formalisms tackled in the book is anticipated, and it is hoped that the book will serve as a starting point for future theoretical and practical investigations, which will no doubt establish further results and gain deeper insights.
New Trends in Intelligent Software Methodologies, Tools and Techniques
Author: H. Fujita
Publisher: IOS Press
ISBN: 1643683179
Category : Computers
Languages : en
Pages : 744
Book Description
The integration of applied intelligence with software has been an essential enabler for science and the new economy, creating new possibilities for a more reliable, flexible and robust society. But current software methodologies, tools, and techniques often fall short of expectations, and are not yet sufficiently robust or reliable for a constantly changing and evolving market. This book presents the proceedings of SoMeT_22, the 21st International Conference on New Trends in Intelligent Software Methodology Tools, and Techniques, held from 20 - 22 September 2022 in Kitakyushu, Japan. The SoMeT conference provides a platform for the exchange of ideas and experience in the field of software technology, with the emphasis on human-centric software methodologies, end-user development techniques, and emotional reasoning for optimal performance. The 58 papers presented here were each carefully reviewed by 3 or 4 referees for technical soundness, relevance, originality, significance and clarity, they were then revised before being selected by the international reviewing committee. The papers are arranged in 9 chapters: software systems with intelligent design; software systems security and techniques; formal techniques for system software and quality assessment; applied intelligence in software; intelligent decision support systems; cyber-physical systems; knowledge science and intelligent computing; ontology in data and software; and machine learning in systems software. The book assembles the work of scholars from the international research community to capture the essence of the new state-of-the-art in software science and its supporting technology, and will be of interest to all those working in the field.
Publisher: IOS Press
ISBN: 1643683179
Category : Computers
Languages : en
Pages : 744
Book Description
The integration of applied intelligence with software has been an essential enabler for science and the new economy, creating new possibilities for a more reliable, flexible and robust society. But current software methodologies, tools, and techniques often fall short of expectations, and are not yet sufficiently robust or reliable for a constantly changing and evolving market. This book presents the proceedings of SoMeT_22, the 21st International Conference on New Trends in Intelligent Software Methodology Tools, and Techniques, held from 20 - 22 September 2022 in Kitakyushu, Japan. The SoMeT conference provides a platform for the exchange of ideas and experience in the field of software technology, with the emphasis on human-centric software methodologies, end-user development techniques, and emotional reasoning for optimal performance. The 58 papers presented here were each carefully reviewed by 3 or 4 referees for technical soundness, relevance, originality, significance and clarity, they were then revised before being selected by the international reviewing committee. The papers are arranged in 9 chapters: software systems with intelligent design; software systems security and techniques; formal techniques for system software and quality assessment; applied intelligence in software; intelligent decision support systems; cyber-physical systems; knowledge science and intelligent computing; ontology in data and software; and machine learning in systems software. The book assembles the work of scholars from the international research community to capture the essence of the new state-of-the-art in software science and its supporting technology, and will be of interest to all those working in the field.
Artificial Intelligence Research and Development
Author: A. Cortés
Publisher: IOS Press
ISBN: 1643683276
Category : Computers
Languages : en
Pages : 390
Book Description
Artificial intelligence has become an integral part of all our lives. Development is rapid in this exciting and far-reaching field, and keeping up to date with the latest research and innovation is crucial to all those working with the technology. This book presents the proceedings of the 24th edition of CCIA, the International Conference of the Catalan Association for Artificial Intelligence, held in Sitges, Spain, from 19 – 21 October 2022. This annual event serves as a meeting point not only for researchers in AI from the Catalan speaking territories (southern France, Catalonia, Valencia, the Balearic Islands and Alghero in Italy) but for researchers from around the world. The programme committee received 59 submissions, from which the 26 long papers and 23 short papers selected for presentation at the conference by the 62 experts who make up the committee are included here. The book is divided into the following sections: combinatorial problem solving and logics for artificial intelligence; sentiment analysis and tekst analysis; data science, recommender systems and decision support systems; machine learning; computer vision; and explainability and argumentation. This book also includes an abstract of the invited talk given by Prof. Fosca Giannotti. Providing a comprehensive overview of research and development, this book will be of interest to all those working in the field of Artificial Intelligence.
Publisher: IOS Press
ISBN: 1643683276
Category : Computers
Languages : en
Pages : 390
Book Description
Artificial intelligence has become an integral part of all our lives. Development is rapid in this exciting and far-reaching field, and keeping up to date with the latest research and innovation is crucial to all those working with the technology. This book presents the proceedings of the 24th edition of CCIA, the International Conference of the Catalan Association for Artificial Intelligence, held in Sitges, Spain, from 19 – 21 October 2022. This annual event serves as a meeting point not only for researchers in AI from the Catalan speaking territories (southern France, Catalonia, Valencia, the Balearic Islands and Alghero in Italy) but for researchers from around the world. The programme committee received 59 submissions, from which the 26 long papers and 23 short papers selected for presentation at the conference by the 62 experts who make up the committee are included here. The book is divided into the following sections: combinatorial problem solving and logics for artificial intelligence; sentiment analysis and tekst analysis; data science, recommender systems and decision support systems; machine learning; computer vision; and explainability and argumentation. This book also includes an abstract of the invited talk given by Prof. Fosca Giannotti. Providing a comprehensive overview of research and development, this book will be of interest to all those working in the field of Artificial Intelligence.
Modern Management Based on Big Data III
Author: A.J. Tallón-Ballesteros
Publisher: IOS Press
ISBN: 1643683012
Category : Computers
Languages : en
Pages : 498
Book Description
Data is the basic ingredient of all Big Data applications, and Big Data technologies are constantly deploying new strategies to maximise efficiency and reduce the time taken to process information. This book presents the proceedings of MMBD2022, the third edition of the conference series Modern Management based on Big Data (MMBD). The conference was originally scheduled to take place from 15 to 18 August 2022 in Seoul, South Korea, but was changed to a virtual event on the same dates. Some 200 submissions were received for presentation at the conference, 52 of which were ultimately accepted after exhaustive review by members of the programme committee and peer-reviewers, who took into account the breadth and depth of the research topics and the scope of MMBD. Topics covered include data analytics, modelling, technologies and visualization, architectures for parallel processing systems, data mining tools and techniques, machine learning algorithms, and big data for engineering applications. There are also papers covering modern management, including topics such as strategy, decision making, manufacturing and logistics-based systems, engineering economy, information systems and law-based information treatment, and papers from a special session covering big data in manufacturing, retail, healthcare, accounting, banking, education, global trading, and e-commerce. Big data analysis and emerging applications were popular topics. The book includes many innovative and original ideas, as well as results of general significance, all supported by clear and rigorous reasoning and compelling evidence and methods, and will be of interest to all those working with Big Data.
Publisher: IOS Press
ISBN: 1643683012
Category : Computers
Languages : en
Pages : 498
Book Description
Data is the basic ingredient of all Big Data applications, and Big Data technologies are constantly deploying new strategies to maximise efficiency and reduce the time taken to process information. This book presents the proceedings of MMBD2022, the third edition of the conference series Modern Management based on Big Data (MMBD). The conference was originally scheduled to take place from 15 to 18 August 2022 in Seoul, South Korea, but was changed to a virtual event on the same dates. Some 200 submissions were received for presentation at the conference, 52 of which were ultimately accepted after exhaustive review by members of the programme committee and peer-reviewers, who took into account the breadth and depth of the research topics and the scope of MMBD. Topics covered include data analytics, modelling, technologies and visualization, architectures for parallel processing systems, data mining tools and techniques, machine learning algorithms, and big data for engineering applications. There are also papers covering modern management, including topics such as strategy, decision making, manufacturing and logistics-based systems, engineering economy, information systems and law-based information treatment, and papers from a special session covering big data in manufacturing, retail, healthcare, accounting, banking, education, global trading, and e-commerce. Big data analysis and emerging applications were popular topics. The book includes many innovative and original ideas, as well as results of general significance, all supported by clear and rigorous reasoning and compelling evidence and methods, and will be of interest to all those working with Big Data.
ECAI 2023
Author: K. Gal
Publisher: IOS Press
ISBN: 164368437X
Category : Computers
Languages : en
Pages : 3328
Book Description
Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrate innovative applications and uses of advanced AI technology. ECAI 2023 received 1896 submissions – a record number – of which 1691 were retained for review, ultimately resulting in an acceptance rate of 23%. The 390 papers included here, cover topics including machine learning, natural language processing, multi agent systems, and vision and knowledge representation and reasoning. PAIS 2023 received 17 submissions, of which 10 were accepted after a rigorous review process. Those 10 papers cover topics ranging from fostering better working environments, behavior modeling and citizen science to large language models and neuro-symbolic applications, and are also included here. Presenting a comprehensive overview of current research and developments in AI, the book will be of interest to all those working in the field.
Publisher: IOS Press
ISBN: 164368437X
Category : Computers
Languages : en
Pages : 3328
Book Description
Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrate innovative applications and uses of advanced AI technology. ECAI 2023 received 1896 submissions – a record number – of which 1691 were retained for review, ultimately resulting in an acceptance rate of 23%. The 390 papers included here, cover topics including machine learning, natural language processing, multi agent systems, and vision and knowledge representation and reasoning. PAIS 2023 received 17 submissions, of which 10 were accepted after a rigorous review process. Those 10 papers cover topics ranging from fostering better working environments, behavior modeling and citizen science to large language models and neuro-symbolic applications, and are also included here. Presenting a comprehensive overview of current research and developments in AI, the book will be of interest to all those working in the field.