Author: J. Morris Chang
Publisher: Simon and Schuster
ISBN: 1617298042
Category : Computers
Languages : en
Pages : 334
Book Description
Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthetic data generation Privacy-enhancing technologies for data mining and database applications Compressive privacy for machine learning Privacy-Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You’ll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you’re done reading, you’ll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning applications need massive amounts of data. It’s up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you’ll need to secure your data pipelines end to end. About the Book Privacy-Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You’ll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you’ll develop in the final chapter. What’s Inside Differential and compressive privacy techniques Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning Privacy-preserving synthetic data generation Enhanced privacy for data mining and database applications About the Reader For machine learning engineers and developers. Examples in Python and Java. About the Author J. Morris Chang is a professor at the University of South Florida. His research projects have been funded by DARPA and the DoD. Di Zhuang is a security engineer at Snap Inc. Dumindu Samaraweera is an assistant research professor at the University of South Florida. The technical editor for this book, Wilko Henecka, is a senior software engineer at Ambiata where he builds privacy-preserving software. Table of Contents PART 1 - BASICS OF PRIVACY-PRESERVING MACHINE LEARNING WITH DIFFERENTIAL PRIVACY 1 Privacy considerations in machine learning 2 Differential privacy for machine learning 3 Advanced concepts of differential privacy for machine learning PART 2 - LOCAL DIFFERENTIAL PRIVACY AND SYNTHETIC DATA GENERATION 4 Local differential privacy for machine learning 5 Advanced LDP mechanisms for machine learning 6 Privacy-preserving synthetic data generation PART 3 - BUILDING PRIVACY-ASSURED MACHINE LEARNING APPLICATIONS 7 Privacy-preserving data mining techniques 8 Privacy-preserving data management and operations 9 Compressive privacy for machine learning 10 Putting it all together: Designing a privacy-enhanced platform (DataHub)
Privacy-Preserving Machine Learning
Author: J. Morris Chang
Publisher: Simon and Schuster
ISBN: 1617298042
Category : Computers
Languages : en
Pages : 334
Book Description
Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthetic data generation Privacy-enhancing technologies for data mining and database applications Compressive privacy for machine learning Privacy-Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You’ll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you’re done reading, you’ll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning applications need massive amounts of data. It’s up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you’ll need to secure your data pipelines end to end. About the Book Privacy-Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You’ll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you’ll develop in the final chapter. What’s Inside Differential and compressive privacy techniques Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning Privacy-preserving synthetic data generation Enhanced privacy for data mining and database applications About the Reader For machine learning engineers and developers. Examples in Python and Java. About the Author J. Morris Chang is a professor at the University of South Florida. His research projects have been funded by DARPA and the DoD. Di Zhuang is a security engineer at Snap Inc. Dumindu Samaraweera is an assistant research professor at the University of South Florida. The technical editor for this book, Wilko Henecka, is a senior software engineer at Ambiata where he builds privacy-preserving software. Table of Contents PART 1 - BASICS OF PRIVACY-PRESERVING MACHINE LEARNING WITH DIFFERENTIAL PRIVACY 1 Privacy considerations in machine learning 2 Differential privacy for machine learning 3 Advanced concepts of differential privacy for machine learning PART 2 - LOCAL DIFFERENTIAL PRIVACY AND SYNTHETIC DATA GENERATION 4 Local differential privacy for machine learning 5 Advanced LDP mechanisms for machine learning 6 Privacy-preserving synthetic data generation PART 3 - BUILDING PRIVACY-ASSURED MACHINE LEARNING APPLICATIONS 7 Privacy-preserving data mining techniques 8 Privacy-preserving data management and operations 9 Compressive privacy for machine learning 10 Putting it all together: Designing a privacy-enhanced platform (DataHub)
Publisher: Simon and Schuster
ISBN: 1617298042
Category : Computers
Languages : en
Pages : 334
Book Description
Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthetic data generation Privacy-enhancing technologies for data mining and database applications Compressive privacy for machine learning Privacy-Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You’ll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you’re done reading, you’ll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning applications need massive amounts of data. It’s up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you’ll need to secure your data pipelines end to end. About the Book Privacy-Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You’ll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you’ll develop in the final chapter. What’s Inside Differential and compressive privacy techniques Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning Privacy-preserving synthetic data generation Enhanced privacy for data mining and database applications About the Reader For machine learning engineers and developers. Examples in Python and Java. About the Author J. Morris Chang is a professor at the University of South Florida. His research projects have been funded by DARPA and the DoD. Di Zhuang is a security engineer at Snap Inc. Dumindu Samaraweera is an assistant research professor at the University of South Florida. The technical editor for this book, Wilko Henecka, is a senior software engineer at Ambiata where he builds privacy-preserving software. Table of Contents PART 1 - BASICS OF PRIVACY-PRESERVING MACHINE LEARNING WITH DIFFERENTIAL PRIVACY 1 Privacy considerations in machine learning 2 Differential privacy for machine learning 3 Advanced concepts of differential privacy for machine learning PART 2 - LOCAL DIFFERENTIAL PRIVACY AND SYNTHETIC DATA GENERATION 4 Local differential privacy for machine learning 5 Advanced LDP mechanisms for machine learning 6 Privacy-preserving synthetic data generation PART 3 - BUILDING PRIVACY-ASSURED MACHINE LEARNING APPLICATIONS 7 Privacy-preserving data mining techniques 8 Privacy-preserving data management and operations 9 Compressive privacy for machine learning 10 Putting it all together: Designing a privacy-enhanced platform (DataHub)
Security in E-Learning
Author: Edgar R. Weippl
Publisher: Springer Science & Business Media
ISBN: 038726065X
Category : Computers
Languages : en
Pages : 194
Book Description
As e-learning increases in popularity and reach, more people are taking online courses and need to understand the relevant security issues. This book discusses typical threats to e-learning projects, introducing how they have been and should be addressed.
Publisher: Springer Science & Business Media
ISBN: 038726065X
Category : Computers
Languages : en
Pages : 194
Book Description
As e-learning increases in popularity and reach, more people are taking online courses and need to understand the relevant security issues. This book discusses typical threats to e-learning projects, introducing how they have been and should be addressed.
Federated Learning
Author: Qiang Yang
Publisher: Springer Nature
ISBN: 3030630765
Category : Computers
Languages : en
Pages : 291
Book Description
This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
Publisher: Springer Nature
ISBN: 3030630765
Category : Computers
Languages : en
Pages : 291
Book Description
This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
Handbook of Research on Cyber Crime and Information Privacy
Author: Cruz-Cunha, Maria Manuela
Publisher: IGI Global
ISBN: 1799857298
Category : Computers
Languages : en
Pages : 753
Book Description
In recent years, industries have transitioned into the digital realm, as companies and organizations are adopting certain forms of technology to assist in information storage and efficient methods of production. This dependence has significantly increased the risk of cyber crime and breaches in data security. Fortunately, research in the area of cyber security and information protection is flourishing; however, it is the responsibility of industry professionals to keep pace with the current trends within this field. The Handbook of Research on Cyber Crime and Information Privacy is a collection of innovative research on the modern methods of crime and misconduct within cyber space. It presents novel solutions to securing and preserving digital information through practical examples and case studies. While highlighting topics including virus detection, surveillance technology, and social networks, this book is ideally designed for cybersecurity professionals, researchers, developers, practitioners, programmers, computer scientists, academicians, security analysts, educators, and students seeking up-to-date research on advanced approaches and developments in cyber security and information protection.
Publisher: IGI Global
ISBN: 1799857298
Category : Computers
Languages : en
Pages : 753
Book Description
In recent years, industries have transitioned into the digital realm, as companies and organizations are adopting certain forms of technology to assist in information storage and efficient methods of production. This dependence has significantly increased the risk of cyber crime and breaches in data security. Fortunately, research in the area of cyber security and information protection is flourishing; however, it is the responsibility of industry professionals to keep pace with the current trends within this field. The Handbook of Research on Cyber Crime and Information Privacy is a collection of innovative research on the modern methods of crime and misconduct within cyber space. It presents novel solutions to securing and preserving digital information through practical examples and case studies. While highlighting topics including virus detection, surveillance technology, and social networks, this book is ideally designed for cybersecurity professionals, researchers, developers, practitioners, programmers, computer scientists, academicians, security analysts, educators, and students seeking up-to-date research on advanced approaches and developments in cyber security and information protection.
Privacy-Preserving Deep Learning
Author: Kwangjo Kim
Publisher: Springer Nature
ISBN: 9811637644
Category : Computers
Languages : en
Pages : 81
Book Description
This book discusses the state-of-the-art in privacy-preserving deep learning (PPDL), especially as a tool for machine learning as a service (MLaaS), which serves as an enabling technology by combining classical privacy-preserving and cryptographic protocols with deep learning. Google and Microsoft announced a major investment in PPDL in early 2019. This was followed by Google’s infamous announcement of “Private Join and Compute,” an open source PPDL tools based on secure multi-party computation (secure MPC) and homomorphic encryption (HE) in June of that year. One of the challenging issues concerning PPDL is selecting its practical applicability despite the gap between the theory and practice. In order to solve this problem, it has recently been proposed that in addition to classical privacy-preserving methods (HE, secure MPC, differential privacy, secure enclaves), new federated or split learning for PPDL should also be applied. This concept involves building a cloud framework that enables collaborative learning while keeping training data on client devices. This successfully preserves privacy and while allowing the framework to be implemented in the real world. This book provides fundamental insights into privacy-preserving and deep learning, offering a comprehensive overview of the state-of-the-art in PPDL methods. It discusses practical issues, and leveraging federated or split-learning-based PPDL. Covering the fundamental theory of PPDL, the pros and cons of current PPDL methods, and addressing the gap between theory and practice in the most recent approaches, it is a valuable reference resource for a general audience, undergraduate and graduate students, as well as practitioners interested learning about PPDL from the scratch, and researchers wanting to explore PPDL for their applications.
Publisher: Springer Nature
ISBN: 9811637644
Category : Computers
Languages : en
Pages : 81
Book Description
This book discusses the state-of-the-art in privacy-preserving deep learning (PPDL), especially as a tool for machine learning as a service (MLaaS), which serves as an enabling technology by combining classical privacy-preserving and cryptographic protocols with deep learning. Google and Microsoft announced a major investment in PPDL in early 2019. This was followed by Google’s infamous announcement of “Private Join and Compute,” an open source PPDL tools based on secure multi-party computation (secure MPC) and homomorphic encryption (HE) in June of that year. One of the challenging issues concerning PPDL is selecting its practical applicability despite the gap between the theory and practice. In order to solve this problem, it has recently been proposed that in addition to classical privacy-preserving methods (HE, secure MPC, differential privacy, secure enclaves), new federated or split learning for PPDL should also be applied. This concept involves building a cloud framework that enables collaborative learning while keeping training data on client devices. This successfully preserves privacy and while allowing the framework to be implemented in the real world. This book provides fundamental insights into privacy-preserving and deep learning, offering a comprehensive overview of the state-of-the-art in PPDL methods. It discusses practical issues, and leveraging federated or split-learning-based PPDL. Covering the fundamental theory of PPDL, the pros and cons of current PPDL methods, and addressing the gap between theory and practice in the most recent approaches, it is a valuable reference resource for a general audience, undergraduate and graduate students, as well as practitioners interested learning about PPDL from the scratch, and researchers wanting to explore PPDL for their applications.
Legal Issues in Information Security
Author: Joanna Lyn Grama
Publisher: Jones & Bartlett Publishers
ISBN: 1284054756
Category : Computers
Languages : en
Pages : 570
Book Description
This revised and updated second edition addresses the area where law and information security concerns intersect. Information systems security and legal compliance are now required to protect critical governmental and corporate infrastructure, intellectual property created by individuals and organizations alike, and information that individuals believe should be protected from unreasonable intrusion. Organizations must build numerous information security and privacy responses into their daily operations to protect the business itself, fully meet legal requirements, and to meet the expectations of employees and customers. --
Publisher: Jones & Bartlett Publishers
ISBN: 1284054756
Category : Computers
Languages : en
Pages : 570
Book Description
This revised and updated second edition addresses the area where law and information security concerns intersect. Information systems security and legal compliance are now required to protect critical governmental and corporate infrastructure, intellectual property created by individuals and organizations alike, and information that individuals believe should be protected from unreasonable intrusion. Organizations must build numerous information security and privacy responses into their daily operations to protect the business itself, fully meet legal requirements, and to meet the expectations of employees and customers. --
Federated Learning Systems
Author: Muhammad Habib ur Rehman
Publisher: Springer Nature
ISBN: 3030706044
Category : Technology & Engineering
Languages : en
Pages : 207
Book Description
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.
Publisher: Springer Nature
ISBN: 3030706044
Category : Technology & Engineering
Languages : en
Pages : 207
Book Description
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.
Intellectual Privacy
Author: Neil Richards
Publisher: Oxford University Press, USA
ISBN: 0199946140
Category : Law
Languages : en
Pages : 241
Book Description
How should we think about the problems of privacy and free speech? Neil Richards argues that when privacy and free speech truly conflict, free speech should almost always win, but contends that, contrary to conventional wisdom, speech and privacy are only rarely in conflict.
Publisher: Oxford University Press, USA
ISBN: 0199946140
Category : Law
Languages : en
Pages : 241
Book Description
How should we think about the problems of privacy and free speech? Neil Richards argues that when privacy and free speech truly conflict, free speech should almost always win, but contends that, contrary to conventional wisdom, speech and privacy are only rarely in conflict.
Deep Learning Techniques for IoT Security and Privacy
Author: Mohamed Abdel-Basset
Publisher:
ISBN: 9783030890261
Category :
Languages : en
Pages : 0
Book Description
This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.
Publisher:
ISBN: 9783030890261
Category :
Languages : en
Pages : 0
Book Description
This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.
Internet of Healthcare Things
Author: Kavita Sharma
Publisher: John Wiley & Sons
ISBN: 1119791766
Category : Science
Languages : en
Pages : 308
Book Description
INTERNET OF HEALTHCARE THINGS The book addresses privacy and security issues providing solutions through authentication and authorization mechanisms, blockchain, fog computing, machine learning algorithms, so that machine learning-enabled IoT devices can deliver information concealed in data for fast, computerized responses and enhanced decision-making. The main objective of this book is to motivate healthcare providers to use telemedicine facilities for monitoring patients in urban and rural areas and gather clinical data for further research. To this end, it provides an overview of the Internet of Healthcare Things (IoHT) and discusses one of the major threats posed by it, which is the data security and data privacy of health records. Another major threat is the combination of numerous devices and protocols, precision time, data overloading, etc. In the IoHT, multiple devices are connected and communicate through certain protocols. Therefore, the application of emerging technologies to mitigate these threats and provide secure data communication over the network is discussed. This book also discusses the integration of machine learning with the IoHT for analyzing huge amounts of data for predicting diseases more accurately. Case studies are also given to verify the concepts presented in the book. Audience Researchers and industry engineers in computer science, artificial intelligence, healthcare sector, IT professionals, network administrators, cybersecurity experts.
Publisher: John Wiley & Sons
ISBN: 1119791766
Category : Science
Languages : en
Pages : 308
Book Description
INTERNET OF HEALTHCARE THINGS The book addresses privacy and security issues providing solutions through authentication and authorization mechanisms, blockchain, fog computing, machine learning algorithms, so that machine learning-enabled IoT devices can deliver information concealed in data for fast, computerized responses and enhanced decision-making. The main objective of this book is to motivate healthcare providers to use telemedicine facilities for monitoring patients in urban and rural areas and gather clinical data for further research. To this end, it provides an overview of the Internet of Healthcare Things (IoHT) and discusses one of the major threats posed by it, which is the data security and data privacy of health records. Another major threat is the combination of numerous devices and protocols, precision time, data overloading, etc. In the IoHT, multiple devices are connected and communicate through certain protocols. Therefore, the application of emerging technologies to mitigate these threats and provide secure data communication over the network is discussed. This book also discusses the integration of machine learning with the IoHT for analyzing huge amounts of data for predicting diseases more accurately. Case studies are also given to verify the concepts presented in the book. Audience Researchers and industry engineers in computer science, artificial intelligence, healthcare sector, IT professionals, network administrators, cybersecurity experts.