R for Data Science

R for Data Science PDF Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521

Get Book Here

Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

R for Data Science

R for Data Science PDF Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910364
Category : Computers
Languages : en
Pages : 521

Get Book Here

Book Description
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Learn Data Analysis with Python

Learn Data Analysis with Python PDF Author: A.J. Henley
Publisher: Apress
ISBN: 1484234863
Category : Computers
Languages : en
Pages : 103

Get Book Here

Book Description
Get started using Python in data analysis with this compact practical guide. This book includes three exercises and a case study on getting data in and out of Python code in the right format. Learn Data Analysis with Python also helps you discover meaning in the data using analysis and shows you how to visualize it. Each lesson is, as much as possible, self-contained to allow you to dip in and out of the examples as your needs dictate. If you are already using Python for data analysis, you will find a number of things that you wish you knew how to do in Python. You can then take these techniques and apply them directly to your own projects. If you aren’t using Python for data analysis, this book takes you through the basics at the beginning to give you a solid foundation in the topic. As you work your way through the book you will have a better of idea of how to use Python for data analysis when you are finished. What You Will Learn Get data into and out of Python code Prepare the data and its format Find the meaning of the data Visualize the data using iPython Who This Book Is For Those who want to learn data analysis using Python. Some experience with Python is recommended but not required, as is some prior experience with data analysis or data science.

Mastering Shiny

Mastering Shiny PDF Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 149204735X
Category : Computers
Languages : en
Pages : 372

Get Book Here

Book Description
Master the Shiny web framework—and take your R skills to a whole new level. By letting you move beyond static reports, Shiny helps you create fully interactive web apps for data analyses. Users will be able to jump between datasets, explore different subsets or facets of the data, run models with parameter values of their choosing, customize visualizations, and much more. Hadley Wickham from RStudio shows data scientists, data analysts, statisticians, and scientific researchers with no knowledge of HTML, CSS, or JavaScript how to create rich web apps from R. This in-depth guide provides a learning path that you can follow with confidence, as you go from a Shiny beginner to an expert developer who can write large, complex apps that are maintainable and performant. Get started: Discover how the major pieces of a Shiny app fit together Put Shiny in action: Explore Shiny functionality with a focus on code samples, example apps, and useful techniques Master reactivity: Go deep into the theory and practice of reactive programming and examine reactive graph components Apply best practices: Examine useful techniques for making your Shiny apps work well in production

Data Analysis

Data Analysis PDF Author: Peter J. Huber
Publisher: John Wiley & Sons
ISBN: 1118018265
Category : Mathematics
Languages : en
Pages : 267

Get Book Here

Book Description
This book explores the many provocative questions concerning the fundamentals of data analysis. It is based on the time-tested experience of one of the gurus of the subject matter. Why should one study data analysis? How should it be taught? What techniques work best, and for whom? How valid are the results? How much data should be tested? Which machine languages should be used, if used at all? Emphasis on apprenticeship (through hands-on case studies) and anecdotes (through real-life applications) are the tools that Peter J. Huber uses in this volume. Concern with specific statistical techniques is not of immediate value; rather, questions of strategy – when to use which technique – are employed. Central to the discussion is an understanding of the significance of massive (or robust) data sets, the implementation of languages, and the use of models. Each is sprinkled with an ample number of examples and case studies. Personal practices, various pitfalls, and existing controversies are presented when applicable. The book serves as an excellent philosophical and historical companion to any present-day text in data analysis, robust statistics, data mining, statistical learning, or computational statistics.

A Hands-On Introduction to Data Science

A Hands-On Introduction to Data Science PDF Author: Chirag Shah
Publisher: Cambridge University Press
ISBN: 1108472443
Category : Business & Economics
Languages : en
Pages : 459

Get Book Here

Book Description
An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.

Python for Data Analysis

Python for Data Analysis PDF Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
ISBN: 1491957611
Category : Computers
Languages : en
Pages : 553

Get Book Here

Book Description
Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Data Analysis for Business, Economics, and Policy

Data Analysis for Business, Economics, and Policy PDF Author: Gábor Békés
Publisher: Cambridge University Press
ISBN: 1108483011
Category : Business & Economics
Languages : en
Pages : 741

Get Book Here

Book Description
A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.

Head First Data Analysis

Head First Data Analysis PDF Author: Michael Milton
Publisher: "O'Reilly Media, Inc."
ISBN: 0596153937
Category : Business & Economics
Languages : en
Pages : 486

Get Book Here

Book Description
A guide for data managers and analyzers. It shares guidelines for identifying patterns, predicting future outcomes, and presenting findings to others.

Excel 2016 Bible

Excel 2016 Bible PDF Author: John Walkenbach
Publisher: John Wiley & Sons
ISBN: 1119067499
Category : Computers
Languages : en
Pages : 1155

Get Book Here

Book Description
The complete guide to Excel 2016, from Mr. Spreadsheet himself Whether you are just starting out or an Excel novice, the Excel 2016 Bible is your comprehensive, go-to guide for all your Excel 2016 needs. Whether you use Excel at work or at home, you will be guided through the powerful new features and capabilities by expert author and Excel Guru John Walkenbach to take full advantage of what the updated version offers. Learn to incorporate templates, implement formulas, create pivot tables, analyze data, and much more. Navigate this powerful tool for business, home management, technical work, and much more with the only resource you need, Excel 2016 Bible. Create functional spreadsheets that work Master formulas, formatting, pivot tables, and more Get acquainted with Excel 2016's new features and tools Customize downloadable templates and worksheets Whether you need a walkthrough tutorial or an easy-to-navigate desk reference, the Excel 2016 Bible has you covered with complete coverage and clear expert guidance.

Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Fundamentals of Machine Learning for Predictive Data Analytics, second edition PDF Author: John D. Kelleher
Publisher: MIT Press
ISBN: 0262361108
Category : Computers
Languages : en
Pages : 853

Get Book Here

Book Description
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.