The Spectrum of Hyperbolic Surfaces

The Spectrum of Hyperbolic Surfaces PDF Author: Nicolas Bergeron
Publisher: Springer
ISBN: 3319276662
Category : Mathematics
Languages : en
Pages : 375

Get Book Here

Book Description
This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called “arithmetic hyperbolic surfaces”, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them. After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss. The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.

The Spectrum of Hyperbolic Surfaces

The Spectrum of Hyperbolic Surfaces PDF Author: Nicolas Bergeron
Publisher: Springer
ISBN: 3319276662
Category : Mathematics
Languages : en
Pages : 375

Get Book Here

Book Description
This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called “arithmetic hyperbolic surfaces”, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them. After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss. The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.

Progress in Inverse Spectral Geometry

Progress in Inverse Spectral Geometry PDF Author: Stig I. Andersson
Publisher: Birkhäuser
ISBN: 3034889380
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
Most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t> O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t)uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* ®E), locally given by 00 K(x, y; t) = L>-IAk(~k ® 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g., the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.

Annals of Mathematics

Annals of Mathematics PDF Author:
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 650

Get Book Here

Book Description


Le spectre des surfaces hyperboliques

Le spectre des surfaces hyperboliques PDF Author: Nicolas Bergeron
Publisher:
ISBN: 9782271072344
Category : Hyperbolic spaces
Languages : fr
Pages : 338

Get Book Here

Book Description


Zeta Functions in Geometry

Zeta Functions in Geometry PDF Author: Kurokawa N. (Nobushige)
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 466

Get Book Here

Book Description
This book contains accounts of work presented during the research conference, ``Zeta Functions in Geometry,'' held at the Tokyo Institute of Technology in August 1990. The aim of the conference was to provide an opportunity for the discussion of recent results by geometers and number theorists on zeta functions in several different categories. The exchange of ideas produced new insights on various geometric zeta functions, as well as the classical zeta functions. The zeta functions covered here are the Selberg zeta functions, the Ihara zeta functions, spectral zeta functions, and those associated with prehomogeneous vector spaces. Accessible to graduate students with background in geometry and number theory, Zeta Functions in Geometry will prove useful for its presentation of new results and up-to-date surveys.

Spectral Geometry

Spectral Geometry PDF Author: Pierre H. Berard
Publisher: Springer
ISBN: 3540409580
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description


Dynamical Numbers: Interplay between Dynamical Systems and Number Theory

Dynamical Numbers: Interplay between Dynamical Systems and Number Theory PDF Author: S. F. Koli︠a︡da
Publisher: American Mathematical Soc.
ISBN: 0821849581
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
This volume contains papers from the special program and international conference on Dynamical Numbers which were held at the Max-Planck Institute in Bonn, Germany in 2009. These papers reflect the extraordinary range and depth of the interactions between ergodic theory and dynamical systems and number theory. Topics covered in the book include stationary measures, systems of enumeration, geometrical methods, spectral methods, and algebraic dynamical systems.

Random Surfaces

Random Surfaces PDF Author: Scott Sheffield
Publisher:
ISBN:
Category : Gibbs' free energy
Languages : en
Pages : 194

Get Book Here

Book Description


Geodesic and Horocyclic Trajectories

Geodesic and Horocyclic Trajectories PDF Author: Françoise Dal’Bo
Publisher: Springer Science & Business Media
ISBN: 0857290738
Category : Mathematics
Languages : en
Pages : 181

Get Book Here

Book Description
Geodesic and Horocyclic Trajectories presents an introduction to the topological dynamics of two classical flows associated with surfaces of curvature −1, namely the geodesic and horocycle flows. Written primarily with the idea of highlighting, in a relatively elementary framework, the existence of gateways between some mathematical fields, and the advantages of using them, historical aspects of this field are not addressed and most of the references are reserved until the end of each chapter in the Comments section. Topics within the text cover geometry, and examples, of Fuchsian groups; topological dynamics of the geodesic flow; Schottky groups; the Lorentzian point of view and Trajectories and Diophantine approximations.

Old and New Aspects in Spectral Geometry

Old and New Aspects in Spectral Geometry PDF Author: M.-E. Craioveanu
Publisher: Springer Science & Business Media
ISBN: 940172475X
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltrami opera tor and the Hodge-de Rham operators, which are natural [that is, they commute with the isometries of (M,g)], elliptic, self-adjoint second order differential operators acting on the space of real valued smooth functions on M and the spaces of smooth differential forms on M, respectively. If M is closed, the spectrum of each such operator is an infinite divergent sequence of real numbers, each eigenvalue being repeated according to its finite multiplicity. Spectral Geometry is concerned with the spectra of these operators, also the extent to which these spectra determine the geometry of (M, g) and the topology of M. This problem has been translated by several authors (most notably M. Kac). into the col loquial question "Can one hear the shape of a manifold?" because of its analogy with the wave equation. This terminology was inspired from earlier results of H. Weyl. It is known that the above spectra cannot completely determine either the geometry of (M , g) or the topology of M. For instance, there are examples of pairs of closed Riemannian manifolds with the same spectra corresponding to the Laplace-Beltrami operators, but which differ substantially in their geometry and which are even not homotopically equiva lent.