Author: Andrea Montessori
Publisher: Morgan & Claypool Publishers
ISBN: 1681746751
Category : Science
Languages : en
Pages : 151
Book Description
Nature continuously presents a huge number of complex and multi-scale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since its appearance on the surface of Earth, Mankind has tried to exploit and tame fluids for their purposes, probably starting with Hero's machinery to open the doors of the Temple of Serapis in Alexandria to arrive to modern propulsion systems and actuators. Today we know that fluid mechanics lies at the basis of countless scientific and technical applications from the smallest physical scales (nanofluidics, bacterial motility, and diffusive flows in porous media), to the largest (from energy production in power plants to oceanography and meteorology). It is essential to deepen the understanding of fluid behaviour across scales for the progress of Mankind and for a more sustainable and efficient future. Since the very first years of the Third Millennium, the Lattice Boltzmann Method (LBM) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LBM, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. LBM is based on an optimized formulation of Boltzmann's Kinetic Equation, which allows for the simulation of fluid particles, or rather quasi-particles, from a mesoscopic point of view thus allowing the inclusion of more fundamental physical interactions in respect to the standard schemes adopted with Navier-Stokes solvers, based on the continuum assumption. In this book, the authors present the most recent advances of the application of the LBM to complex flow phenomena of scientific and technical interest with particular focus on the multi-scale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.
Lattice Boltzmann Modeling of Complex Flows for Engineering Applications
Lattice Boltzmann Method And Its Application In Engineering
Author: Zhaoli Guo
Publisher: World Scientific
ISBN: 9814508314
Category : Technology & Engineering
Languages : en
Pages : 419
Book Description
Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh.This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions.With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method.
Publisher: World Scientific
ISBN: 9814508314
Category : Technology & Engineering
Languages : en
Pages : 419
Book Description
Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh.This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions.With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method.
Lattice Boltzmann Modeling
Author: Michael C. Sukop
Publisher: Springer Science & Business Media
ISBN: 3540279822
Category : Science
Languages : en
Pages : 178
Book Description
Here is a basic introduction to Lattice Boltzmann models that emphasizes intuition and simplistic conceptualization of processes, while avoiding the complex mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those whose interest is in model application over detailed mathematics will find this a powerful 'quick start' guide. Example simulations, exercises, and computer codes are included.
Publisher: Springer Science & Business Media
ISBN: 3540279822
Category : Science
Languages : en
Pages : 178
Book Description
Here is a basic introduction to Lattice Boltzmann models that emphasizes intuition and simplistic conceptualization of processes, while avoiding the complex mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those whose interest is in model application over detailed mathematics will find this a powerful 'quick start' guide. Example simulations, exercises, and computer codes are included.
Lattice Boltzmann Modeling of Complex Flows for Engineering Applications
Author: A Montessori
Publisher: Myprint
ISBN: 9781681748016
Category :
Languages : en
Pages : 110
Book Description
Publisher: Myprint
ISBN: 9781681748016
Category :
Languages : en
Pages : 110
Book Description
The Lattice Boltzmann Method
Author: Timm Krüger
Publisher: Springer
ISBN: 3319446495
Category : Science
Languages : en
Pages : 705
Book Description
This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.
Publisher: Springer
ISBN: 3319446495
Category : Science
Languages : en
Pages : 705
Book Description
This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.
Mathematical Modeling for Complex Fluids and Flows
Author: Michel Deville
Publisher: Springer Science & Business Media
ISBN: 3642252958
Category : Mathematics
Languages : en
Pages : 278
Book Description
Mathematical Modeling for Complex Fluids and Flows provides researchers and engineering practitioners encountering fluid flows with state-of-the-art knowledge in continuum concepts and associated fluid dynamics. In doing so it supplies the means to design mathematical models of these flows that adequately express the engineering physics involved. It exploits the implicit link between the turbulent flow of classical Newtonian fluids and the laminar and turbulent flow of non-Newtonian fluids such as those required in food processing and polymeric flows. The book develops a descriptive mathematical model articulated through continuum mechanics concepts for these non-Newtonian, viscoelastic fluids and turbulent flows. Each complex fluid and flow is examined in this continuum context as well as in combination with the turbulent flow of viscoelastic fluids. Some details are also explored via kinetic theory, especially viscoelastic fluids and their treatment with the Boltzmann equation. Both solution and modeling strategies for turbulent flows are laid out using continuum concepts, including a description of constructing polynomial representations and accounting for non-inertial and curvature effects. Ranging from fundamental concepts to practical methodology, and including discussion of emerging technologies, this book is ideal for those requiring a single-source assessment of current practice in this intricate yet vital field.
Publisher: Springer Science & Business Media
ISBN: 3642252958
Category : Mathematics
Languages : en
Pages : 278
Book Description
Mathematical Modeling for Complex Fluids and Flows provides researchers and engineering practitioners encountering fluid flows with state-of-the-art knowledge in continuum concepts and associated fluid dynamics. In doing so it supplies the means to design mathematical models of these flows that adequately express the engineering physics involved. It exploits the implicit link between the turbulent flow of classical Newtonian fluids and the laminar and turbulent flow of non-Newtonian fluids such as those required in food processing and polymeric flows. The book develops a descriptive mathematical model articulated through continuum mechanics concepts for these non-Newtonian, viscoelastic fluids and turbulent flows. Each complex fluid and flow is examined in this continuum context as well as in combination with the turbulent flow of viscoelastic fluids. Some details are also explored via kinetic theory, especially viscoelastic fluids and their treatment with the Boltzmann equation. Both solution and modeling strategies for turbulent flows are laid out using continuum concepts, including a description of constructing polynomial representations and accounting for non-inertial and curvature effects. Ranging from fundamental concepts to practical methodology, and including discussion of emerging technologies, this book is ideal for those requiring a single-source assessment of current practice in this intricate yet vital field.
Lattice Boltzmann Method
Author: Abdulmajeed A. Mohamad
Publisher:
ISBN: 9781447174240
Category : Fluid mechanics
Languages : en
Pages : 228
Book Description
Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.
Publisher:
ISBN: 9781447174240
Category : Fluid mechanics
Languages : en
Pages : 228
Book Description
Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.
Lattice Boltzmann Modeling for Chemical Engineering
Author:
Publisher: Academic Press
ISBN: 0128198443
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
Lattice Boltzmann Modeling for Chemical Engineering, Volume 56 in the Advances in Chemical Engineering series, highlights new advances in the field, with this new volume presenting interesting chapters on Simulations of homogeneous and heterogeneous chemical reactions, LBM for 3D Chemical Reactors, LBM Simulations of PEM fuel cells, LBM for separation processes, LBM for two-phase flow (bio)reactors, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Advances in Chemical Engineering series - Includes the latest information on Lattice Boltzmann Modeling for Chemical Engineering
Publisher: Academic Press
ISBN: 0128198443
Category : Technology & Engineering
Languages : en
Pages : 316
Book Description
Lattice Boltzmann Modeling for Chemical Engineering, Volume 56 in the Advances in Chemical Engineering series, highlights new advances in the field, with this new volume presenting interesting chapters on Simulations of homogeneous and heterogeneous chemical reactions, LBM for 3D Chemical Reactors, LBM Simulations of PEM fuel cells, LBM for separation processes, LBM for two-phase flow (bio)reactors, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Advances in Chemical Engineering series - Includes the latest information on Lattice Boltzmann Modeling for Chemical Engineering
The Lattice Boltzmann Equation
Author: S. Succi
Publisher: Oxford University Press
ISBN: 9780198503989
Category : Mathematics
Languages : en
Pages : 308
Book Description
Certain forms of the Boltzmann equation, have emerged, which relinquish most mathematical complexities of the true Boltzmann equation. This text provides a detailed survey of Lattice Boltzmann equation theory and its major applications.
Publisher: Oxford University Press
ISBN: 9780198503989
Category : Mathematics
Languages : en
Pages : 308
Book Description
Certain forms of the Boltzmann equation, have emerged, which relinquish most mathematical complexities of the true Boltzmann equation. This text provides a detailed survey of Lattice Boltzmann equation theory and its major applications.
Lattice-Gas Cellular Automata and Lattice Boltzmann Models
Author: Dieter A. Wolf-Gladrow
Publisher: Springer
ISBN: 3540465863
Category : Mathematics
Languages : en
Pages : 320
Book Description
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
Publisher: Springer
ISBN: 3540465863
Category : Mathematics
Languages : en
Pages : 320
Book Description
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.