Latent Markov Models for Longitudinal Data

Latent Markov Models for Longitudinal Data PDF Author: Francesco Bartolucci
Publisher: CRC Press
ISBN: 1466583711
Category : Mathematics
Languages : en
Pages : 253

Get Book Here

Book Description
Drawing on the authors' extensive research in the analysis of categorical longitudinal data, this book focuses on the formulation of latent Markov models and the practical use of these models. It demonstrates how to use the models in three types of analysis, with numerous examples illustrating how latent Markov models are used in economics, education, sociology, and other fields. The R and MATLAB routines used for the examples are available on the authors' website.

Latent Markov Models for Longitudinal Data

Latent Markov Models for Longitudinal Data PDF Author: Francesco Bartolucci
Publisher: CRC Press
ISBN: 1466583711
Category : Mathematics
Languages : en
Pages : 253

Get Book Here

Book Description
Drawing on the authors' extensive research in the analysis of categorical longitudinal data, this book focuses on the formulation of latent Markov models and the practical use of these models. It demonstrates how to use the models in three types of analysis, with numerous examples illustrating how latent Markov models are used in economics, education, sociology, and other fields. The R and MATLAB routines used for the examples are available on the authors' website.

Latent Markov Models for Longitudinal Data

Latent Markov Models for Longitudinal Data PDF Author: Francesco Bartolucci
Publisher:
ISBN:
Category : Electronic book
Languages : en
Pages : 234

Get Book Here

Book Description
"Preface. Latent Markov models represent an important class of latent variable models for the analysis of longitudinal data, when the response variables measure common characteristics of interest which are not directly observable. Typically, the response variables are categorical, even if nothing precludes that they have a different nature. These models find application in many relevant fields, such as educational and health sciences, when the latent characteristics correspond, for instance, to a certain type of ability or to the quality-of-life. Important applications are also in the study of certain human behaviors which are relevant for social and economic research. The main feature that distinguishes latent Markov models from other models for longitudinal data is that the individual characteristics of interest, and their evolution in time, are represented by a latent process which follows a Markov chain. This implies that we are in the field of discrete latent variable models, where the latent variables may assume a finite number of values. Latent Markov models are then strongly related to the latent class model, which is an important tool for classifying a sample of subjects on the basis of a series of categorical response variables. The latter model is based on a discrete latent variable, the different values of which correspond to different subpopulations (named latent classes) having a common distribution about the response variables. The latent Markov model may be seen as an extension of the latent class model in which subjects are allowed to move between the latent classes during the period of observation"--

Hidden Markov Models for Time Series

Hidden Markov Models for Time Series PDF Author: Walter Zucchini
Publisher: CRC Press
ISBN: 1482253844
Category : Mathematics
Languages : en
Pages : 399

Get Book Here

Book Description
Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data

Generalized Latent Variable Modeling

Generalized Latent Variable Modeling PDF Author: Anders Skrondal
Publisher: CRC Press
ISBN: 0203489438
Category : Mathematics
Languages : en
Pages : 523

Get Book Here

Book Description
This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models. Following a gentle introduction to latent variable modeling, the authors clearly explain and contrast a wi

Models for Intensive Longitudinal Data

Models for Intensive Longitudinal Data PDF Author: Theodore A. Walls
Publisher: Oxford University Press
ISBN: 0198038666
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
Rapid technological advances in devices used for data collection have led to the emergence of a new class of longitudinal data: intensive longitudinal data (ILD). Behavioral scientific studies now frequently utilize handheld computers, beepers, web interfaces, and other technological tools for collecting many more data points over time than previously possible. Other protocols, such as those used in fMRI and monitoring of public safety, also produce ILD, hence the statistical models in this volume are applicable to a range of data. The volume features state-of-the-art statistical modeling strategies developed by leading statisticians and methodologists working on ILD in conjunction with behavioral scientists. Chapters present applications from across the behavioral and health sciences, including coverage of substantive topics such as stress, smoking cessation, alcohol use, traffic patterns, educational performance and intimacy. Models for Intensive Longitudinal Data (MILD) is designed for those who want to learn about advanced statistical models for intensive longitudinal data and for those with an interest in selecting and applying a given model. The chapters highlight issues of general concern in modeling these kinds of data, such as a focus on regulatory systems, issues of curve registration, variable frequency and spacing of measurements, complex multivariate patterns of change, and multiple independent series. The extraordinary breadth of coverage makes this an indispensable reference for principal investigators designing new studies that will introduce ILD, applied statisticians working on related models, and methodologists, graduate students, and applied analysts working in a range of fields. A companion Web site at www.oup.com/us/MILD contains program examples and documentation.

Methods and Applications of Longitudinal Data Analysis

Methods and Applications of Longitudinal Data Analysis PDF Author: Xian Liu
Publisher: Elsevier
ISBN: 0128014822
Category : Mathematics
Languages : en
Pages : 531

Get Book Here

Book Description
Methods and Applications of Longitudinal Data Analysis describes methods for the analysis of longitudinal data in the medical, biological and behavioral sciences. It introduces basic concepts and functions including a variety of regression models, and their practical applications across many areas of research. Statistical procedures featured within the text include: - descriptive methods for delineating trends over time - linear mixed regression models with both fixed and random effects - covariance pattern models on correlated errors - generalized estimating equations - nonlinear regression models for categorical repeated measurements - techniques for analyzing longitudinal data with non-ignorable missing observations Emphasis is given to applications of these methods, using substantial empirical illustrations, designed to help users of statistics better analyze and understand longitudinal data. Methods and Applications of Longitudinal Data Analysis equips both graduate students and professionals to confidently apply longitudinal data analysis to their particular discipline. It also provides a valuable reference source for applied statisticians, demographers and other quantitative methodologists. - From novice to professional: this book starts with the introduction of basic models and ends with the description of some of the most advanced models in longitudinal data analysis - Enables students to select the correct statistical methods to apply to their longitudinal data and avoid the pitfalls associated with incorrect selection - Identifies the limitations of classical repeated measures models and describes newly developed techniques, along with real-world examples.

Applied Latent Class Analysis

Applied Latent Class Analysis PDF Author: Jacques A. Hagenaars
Publisher: Cambridge University Press
ISBN: 1139439235
Category : Social Science
Languages : en
Pages : 478

Get Book Here

Book Description
Applied Latent Class Analysis introduces several innovations in latent class analysis to a wider audience of researchers. Many of the world's leading innovators in the field of latent class analysis contributed essays to this volume, each presenting a key innovation to the basic latent class model and illustrating how it can prove useful in situations typically encountered in actual research.

Longitudinal Structural Equation Modeling

Longitudinal Structural Equation Modeling PDF Author: Todd D. Little
Publisher: Guilford Press
ISBN: 1462510272
Category : Psychology
Languages : en
Pages : 411

Get Book Here

Book Description
This book has been replaced by Longitudinal Structural Equation Modeling, Second Edition, ISBN 978-1-4625-5314-3.

Multivariate Statistical Modelling Based on Generalized Linear Models

Multivariate Statistical Modelling Based on Generalized Linear Models PDF Author: Ludwig Fahrmeir
Publisher: Springer Science & Business Media
ISBN: 1489900101
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
Concerned with the use of generalised linear models for univariate and multivariate regression analysis, this is a detailed introductory survey of the subject, based on the analysis of real data drawn from a variety of subjects such as the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account.

Advances in Latent Variable Mixture Models

Advances in Latent Variable Mixture Models PDF Author: Gregory R. Hancock
Publisher: IAP
ISBN: 1607526344
Category : Mathematics
Languages : en
Pages : 382

Get Book Here

Book Description
The current volume, Advances in Latent Variable Mixture Models, contains chapters by all of the speakers who participated in the 2006 CILVR conference, providing not just a snapshot of the event, but more importantly chronicling the state of the art in latent variable mixture model research. The volume starts with an overview chapter by the CILVR conference keynote speaker, Bengt Muthén, offering a “lay of the land” for latent variable mixture models before the volume moves to more specific constellations of topics. Part I, Multilevel and Longitudinal Systems, deals with mixtures for data that are hierarchical in nature either due to the data’s sampling structure or to the repetition of measures (of varied types) over time. Part II, Models for Assessment and Diagnosis, addresses scenarios for making judgments about individuals’ state of knowledge or development, and about the instruments used for making such judgments. Finally, Part III, Challenges in Model Evaluation, focuses on some of the methodological issues associated with the selection of models most accurately representing the processes and populations under investigation. It should be stated that this volume is not intended to be a first exposure to latent variable methods. Readers lacking such foundational knowledge are encouraged to consult primary and/or secondary didactic resources in order to get the most from the chapters in this volume. Once armed with the basic understanding of latent variable methods, we believe readers will find this volume incredibly exciting.