Author: Dieter Bäuerle
Publisher: Springer Science & Business Media
ISBN: 3642176135
Category : Science
Languages : en
Pages : 846
Book Description
Laser Processing and Chemistry gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of laser techniques in micro-machining, and the patterning, coating, and modification of material surfaces. This fourth edition has been revised and enlarged to cover new topics such as 3D microfabrication, advances in nanotechnology, ultrafast laser technology and laser chemical processing (LCP). Graduate students, physicists, chemists, engineers, and manufacturers alike will find this book an invaluable reference work on laser processing.
Laser Processing and Chemistry
Author: Dieter Bäuerle
Publisher: Springer Science & Business Media
ISBN: 3642176135
Category : Science
Languages : en
Pages : 846
Book Description
Laser Processing and Chemistry gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of laser techniques in micro-machining, and the patterning, coating, and modification of material surfaces. This fourth edition has been revised and enlarged to cover new topics such as 3D microfabrication, advances in nanotechnology, ultrafast laser technology and laser chemical processing (LCP). Graduate students, physicists, chemists, engineers, and manufacturers alike will find this book an invaluable reference work on laser processing.
Publisher: Springer Science & Business Media
ISBN: 3642176135
Category : Science
Languages : en
Pages : 846
Book Description
Laser Processing and Chemistry gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of laser techniques in micro-machining, and the patterning, coating, and modification of material surfaces. This fourth edition has been revised and enlarged to cover new topics such as 3D microfabrication, advances in nanotechnology, ultrafast laser technology and laser chemical processing (LCP). Graduate students, physicists, chemists, engineers, and manufacturers alike will find this book an invaluable reference work on laser processing.
Laser-Induced Chemical Processes
Author: Jeffrey I. Steinfeld
Publisher: Springer Science & Business Media
ISBN: 1468438638
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
The possibility of initiating chemical reactions by high-intensity laser exci tation has captured the imagination of chemists and physicists as well as of industrial scientists and the scientifically informed public in general ever since the laser first became available. Initially, great hopes were held that laser-induced chemistry would revolutionize synthetic chemistry, making possible "bond-specific" or "mode-specific" reactions that were impos sible to achieve under thermal equilibrium conditions. Indeed, some of the early work in this area, typically employing high-power continuous-wave sources, was interpreted in just this way. With further investigation, however, a more conservative picture has emerged, with the laser taking its place as one of a number of available methods for initiation of high-energy chemical transformations. Unlike a number of these methods, such as flash photolysis, shock tubes, and electron-beam radiolysis, the laser is capable of a high degree of spatial and molecular localization of deposited energy, which in turn is reflected in such applications as isotope enrichment or localized surface treatments. The use of lasers to initiate chemical processes has led to the discovery of several distinctly new molecular phenomena, foremost among which is that of multiple-photon excitation and dissociation of polyatomic molecules. This research area has received the greatest attention thus far and forms the focus of the present volume.
Publisher: Springer Science & Business Media
ISBN: 1468438638
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
The possibility of initiating chemical reactions by high-intensity laser exci tation has captured the imagination of chemists and physicists as well as of industrial scientists and the scientifically informed public in general ever since the laser first became available. Initially, great hopes were held that laser-induced chemistry would revolutionize synthetic chemistry, making possible "bond-specific" or "mode-specific" reactions that were impos sible to achieve under thermal equilibrium conditions. Indeed, some of the early work in this area, typically employing high-power continuous-wave sources, was interpreted in just this way. With further investigation, however, a more conservative picture has emerged, with the laser taking its place as one of a number of available methods for initiation of high-energy chemical transformations. Unlike a number of these methods, such as flash photolysis, shock tubes, and electron-beam radiolysis, the laser is capable of a high degree of spatial and molecular localization of deposited energy, which in turn is reflected in such applications as isotope enrichment or localized surface treatments. The use of lasers to initiate chemical processes has led to the discovery of several distinctly new molecular phenomena, foremost among which is that of multiple-photon excitation and dissociation of polyatomic molecules. This research area has received the greatest attention thus far and forms the focus of the present volume.
Laser Processing and Diagnostics
Author: D. Bäuerle
Publisher: Springer Science & Business Media
ISBN: 3642823815
Category : Science
Languages : en
Pages : 561
Book Description
Laser processing is now a rapidly increasing field with many real and potential applications in different areas of technology such as micromecha nics, metallurgy, integrated optics, and semiconductor device fabrication. The neces s ity for such soph i st i cated 1 i ght sources as 1 asers is based on the spatial coherence and the monochromaticity of laser light. The spatial coherence permits extreme focussing of the laser light resulting in the availability of high energy densities which can be used for strongly loca lized heat- and chemical-treatment of materials, with a resolution down to 1 ess than 1 lJIll. When us i ng pul sed or scanned cw-l asers, 1 oca 1 i zat i on in time is also possible. Additionally, the monochromaticity of laser light allows for control of the depth of heat treatment and/or selective, nonthermal bond breaking - within the surface of the material or within the molecules of the surrounding reactive atmosphere - simply by tuning the laser wavelength. These inherent advantages of laser light permit micromachining of materials (drilling, cutting, welding etc.) and also allow single-step controlled area processing of thin films and surfaces. Processes include structural transformation (removal of residual damage, grain growth in polycrystalline material, amorphization, surface hardening etc.), etching, doping, alloying, or deposition. In addition, laser processing is not 1 imited to planar substrates.
Publisher: Springer Science & Business Media
ISBN: 3642823815
Category : Science
Languages : en
Pages : 561
Book Description
Laser processing is now a rapidly increasing field with many real and potential applications in different areas of technology such as micromecha nics, metallurgy, integrated optics, and semiconductor device fabrication. The neces s ity for such soph i st i cated 1 i ght sources as 1 asers is based on the spatial coherence and the monochromaticity of laser light. The spatial coherence permits extreme focussing of the laser light resulting in the availability of high energy densities which can be used for strongly loca lized heat- and chemical-treatment of materials, with a resolution down to 1 ess than 1 lJIll. When us i ng pul sed or scanned cw-l asers, 1 oca 1 i zat i on in time is also possible. Additionally, the monochromaticity of laser light allows for control of the depth of heat treatment and/or selective, nonthermal bond breaking - within the surface of the material or within the molecules of the surrounding reactive atmosphere - simply by tuning the laser wavelength. These inherent advantages of laser light permit micromachining of materials (drilling, cutting, welding etc.) and also allow single-step controlled area processing of thin films and surfaces. Processes include structural transformation (removal of residual damage, grain growth in polycrystalline material, amorphization, surface hardening etc.), etching, doping, alloying, or deposition. In addition, laser processing is not 1 imited to planar substrates.
Laser Processing and Chemistry
Author: Dieter Bäuerle
Publisher: Springer Science & Business Media
ISBN:
Category : Mathematics
Languages : en
Pages : 680
Book Description
Laser Processing and Chemistry gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of laser techniques in micro-machining, and the patterning, coating, and modification of material surfaces. This third edition has been revised and enlarged to cover new topics such as the synthesis of nanoclusters and nanocrystalline films, ultrashort-pulse laser processing, laser polishing, cleaning, and lithography.Graduate students, physicists, chemists, engineers, and manufacturers alike will find this book an invaluable reference work on laser processing.
Publisher: Springer Science & Business Media
ISBN:
Category : Mathematics
Languages : en
Pages : 680
Book Description
Laser Processing and Chemistry gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of laser techniques in micro-machining, and the patterning, coating, and modification of material surfaces. This third edition has been revised and enlarged to cover new topics such as the synthesis of nanoclusters and nanocrystalline films, ultrashort-pulse laser processing, laser polishing, cleaning, and lithography.Graduate students, physicists, chemists, engineers, and manufacturers alike will find this book an invaluable reference work on laser processing.
Laser-induced Graphene
Author: Ruquan Ye
Publisher:
ISBN: 9789814877275
Category : Graphene
Languages : en
Pages : 88
Book Description
LIG is a revolutionary technique that uses a common CO2 infrared laser scriber, like the one used in any machine shop, for the direct conversion of polymers into porous graphene under ambient conditions. This technique combines the preparation and patterning of 3D graphene in a single step, without the use of wet chemicals. The ease in the structural engineering and excellent mechanical properties of the 3D graphene obtained have made LIG a versatile technique for applications across many fields. This book compiles cutting-edge research on LIG by different research groups all over the world. It discusses the strategies that have been developed to synthesize and engineer graphene, including controlling its properties such as porosity, composition, and surface characteristics. The authors are pioneers in the discovery and development of LIG and the book will appeal to anyone involved in nanotechnology, chemistry, environmental sciences, and device development, especially those with an interest in the synthesis and applications of graphene-based materials.
Publisher:
ISBN: 9789814877275
Category : Graphene
Languages : en
Pages : 88
Book Description
LIG is a revolutionary technique that uses a common CO2 infrared laser scriber, like the one used in any machine shop, for the direct conversion of polymers into porous graphene under ambient conditions. This technique combines the preparation and patterning of 3D graphene in a single step, without the use of wet chemicals. The ease in the structural engineering and excellent mechanical properties of the 3D graphene obtained have made LIG a versatile technique for applications across many fields. This book compiles cutting-edge research on LIG by different research groups all over the world. It discusses the strategies that have been developed to synthesize and engineer graphene, including controlling its properties such as porosity, composition, and surface characteristics. The authors are pioneers in the discovery and development of LIG and the book will appeal to anyone involved in nanotechnology, chemistry, environmental sciences, and device development, especially those with an interest in the synthesis and applications of graphene-based materials.
Chemical Processing with Lasers
Author: Dieter Bäuerle
Publisher: Springer Science & Business Media
ISBN: 3662025051
Category : Science
Languages : en
Pages : 253
Book Description
Materials processing with lasers is a rapidly expanding field which is increasingly captivating the attention of scientists, engineers and manufacturers alike. The aspect of most interest to scientists is provided by the basic interaction mechanisms between the intense light of a laser and materials exposed to a chemically reactive or nonreactive surrounding medium. Engineers and manufacturers see in the laser a new tool which will not only make manufacturing cheaper, faster, cleaner and more accurate but which also opens up entirely new technologies and manufacturing methods that are simply not available using existing techniques. Actual and potential applications range from laser machining to laser-induced materials transformation, coating, patterning, etc. , opening up the prospect of exciting new processing methods for micromechanics, metallurgy, integrated optics, semiconductor manufacture and chemical engineering. This book concentrates on the new and interdisciplinary field of 1 aser-i nduced chemicaZ process i ng of materi als. The techni que permits maskless single-step deposition of thin films of metals, semiconductors or insulators with lateral dimensions ranging from a few tenths of a micrometer up to several centimeters. Moreover, materials removal or synthesis, or surface modifications, such as oxidation, nitridation, reduction, metallization and doping, are also possible within similar dimensions. This book is meant as an introduction. It attempts to cater for the very broad range of specific interests which different groups of readers will have, and this thinking underlies the way in which the material has been arranged.
Publisher: Springer Science & Business Media
ISBN: 3662025051
Category : Science
Languages : en
Pages : 253
Book Description
Materials processing with lasers is a rapidly expanding field which is increasingly captivating the attention of scientists, engineers and manufacturers alike. The aspect of most interest to scientists is provided by the basic interaction mechanisms between the intense light of a laser and materials exposed to a chemically reactive or nonreactive surrounding medium. Engineers and manufacturers see in the laser a new tool which will not only make manufacturing cheaper, faster, cleaner and more accurate but which also opens up entirely new technologies and manufacturing methods that are simply not available using existing techniques. Actual and potential applications range from laser machining to laser-induced materials transformation, coating, patterning, etc. , opening up the prospect of exciting new processing methods for micromechanics, metallurgy, integrated optics, semiconductor manufacture and chemical engineering. This book concentrates on the new and interdisciplinary field of 1 aser-i nduced chemicaZ process i ng of materi als. The techni que permits maskless single-step deposition of thin films of metals, semiconductors or insulators with lateral dimensions ranging from a few tenths of a micrometer up to several centimeters. Moreover, materials removal or synthesis, or surface modifications, such as oxidation, nitridation, reduction, metallization and doping, are also possible within similar dimensions. This book is meant as an introduction. It attempts to cater for the very broad range of specific interests which different groups of readers will have, and this thinking underlies the way in which the material has been arranged.
Introduction to Laser Spectroscopy
Author: Halina Abramczyk
Publisher: Elsevier
ISBN: 0080455255
Category : Science
Languages : en
Pages : 331
Book Description
Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented. Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology.* A comprehensive course that combines theory and practice* Includes a systematic and comprehensive description for key laser types* Written for students and professionals looking to gain a thorough understanding of modern laser spectroscopy
Publisher: Elsevier
ISBN: 0080455255
Category : Science
Languages : en
Pages : 331
Book Description
Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented. Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology.* A comprehensive course that combines theory and practice* Includes a systematic and comprehensive description for key laser types* Written for students and professionals looking to gain a thorough understanding of modern laser spectroscopy
Photoionization and Photo-Induced Processes in Mass Spectrometry
Author: Ralf Zimmermann
Publisher: John Wiley & Sons
ISBN: 3527335102
Category : Science
Languages : en
Pages : 448
Book Description
Provides comprehensive coverage of laser-induced ionization processes for mass spectrometry analysis Drawing on the expertise of the leading academic and industrial research groups involved in the development of photoionization methods for mass spectrometry, this reference for analytical scientists covers both the theory and current applications of photo-induced ionization processes. It places widely used techniques such as MALDI side by side with more specialist approaches such as REMPI and RIMS, and discusses leading edge developments in ultrashort laser pulse desorption, to give readers a complete picture of the state of the technology. Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications starts with a complete overview of the fundamentals of the technique, covering the basics of the gas phase ionization as well as those of laser desorption and ablation, pulse photoionization, and single particle ionization. Numerous application examples from different analytical fields are described that showcase the power and the wide scope of photo ionization in mass spectrometry. -The first general reference book on photoionization techniques for mass spectrometry -Examines technologies and applications of gas phase resonance-enhanced multiphoton ionization mass spectrometry (REMPI-MS) and gas phase resonance ionization mass spectrometry (RIMS) -Provides complete coverage of popular techniques like MALDI -Discusses the current and potential applications of each technology, focusing on process and environmental analysis Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications is an excellent book for spectroscopists, analytical chemists, photochemists, physical chemists, and laser specialists.
Publisher: John Wiley & Sons
ISBN: 3527335102
Category : Science
Languages : en
Pages : 448
Book Description
Provides comprehensive coverage of laser-induced ionization processes for mass spectrometry analysis Drawing on the expertise of the leading academic and industrial research groups involved in the development of photoionization methods for mass spectrometry, this reference for analytical scientists covers both the theory and current applications of photo-induced ionization processes. It places widely used techniques such as MALDI side by side with more specialist approaches such as REMPI and RIMS, and discusses leading edge developments in ultrashort laser pulse desorption, to give readers a complete picture of the state of the technology. Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications starts with a complete overview of the fundamentals of the technique, covering the basics of the gas phase ionization as well as those of laser desorption and ablation, pulse photoionization, and single particle ionization. Numerous application examples from different analytical fields are described that showcase the power and the wide scope of photo ionization in mass spectrometry. -The first general reference book on photoionization techniques for mass spectrometry -Examines technologies and applications of gas phase resonance-enhanced multiphoton ionization mass spectrometry (REMPI-MS) and gas phase resonance ionization mass spectrometry (RIMS) -Provides complete coverage of popular techniques like MALDI -Discusses the current and potential applications of each technology, focusing on process and environmental analysis Photoionization and Photo-Induced Processes in Mass Spectrometry: Fundamentals and Applications is an excellent book for spectroscopists, analytical chemists, photochemists, physical chemists, and laser specialists.
Laser-induced Breakdown Spectroscopy (LIBS)
Author: Andrzej W. Miziolek
Publisher:
ISBN: 9780511246692
Category : Laser spectroscopy
Languages : en
Pages : 640
Book Description
This is the first comprehensive reference explaining the fundamentals of the LIBS phenomenon, its history and its fascinating applications across eighteen chapters written by recognized leaders in the field. This book will be of significant interest to researchers in chemical and materials analysis within academia and industry.
Publisher:
ISBN: 9780511246692
Category : Laser spectroscopy
Languages : en
Pages : 640
Book Description
This is the first comprehensive reference explaining the fundamentals of the LIBS phenomenon, its history and its fascinating applications across eighteen chapters written by recognized leaders in the field. This book will be of significant interest to researchers in chemical and materials analysis within academia and industry.
Laser-Induced Breakdown Spectroscopy
Author: Jagdish P. Singh
Publisher: Elsevier
ISBN: 0128188308
Category : Science
Languages : en
Pages : 624
Book Description
Laser-Induced Breakdown Spectroscopy, Second Edition, covers the basic principles and latest developments in instrumentation and applications of Laser Induced Breakdown Spectroscopy (LIBS). Written by active experts in the field, it serves as a useful resource for analytical chemists and spectroscopists, as well as graduate students and researchers engaged in the fields of combustion, environmental science, and planetary and space exploration. This fully revised second edition includes several new chapters on new LIBS techniques as well as several new applications, including flame and off-gas measurement, pharmaceutical samples, defense applications, carbon sequestration and site monitoring, handheld instruments, and more. LIBS has rapidly developed into a major analytical technology with the capability of detecting all chemical elements in a sample, of real- time response, and of close-contact or stand-off analysis of targets. It does not require any sample preparation, unlike conventional spectroscopic analytical techniques. Samples in the form of solids, liquids, gels, gases, plasmas, and biological materials (like teeth, leaves, or blood) can be studied with almost equal ease. This comprehensive reference introduces the topic to readers in a simple, direct, and accessible manner for easy comprehension and maximum utility. - Covers even more applications of LIBS beyond the first edition, including combustion, soil physics, environment, and life sciences - Includes new chapters on LIBS techniques that have emerged in the last several years, including Femtosecond LIBS and Molecular LIBS - Provides inspiration for future developments in this rapidly growing field in the concluding chapter
Publisher: Elsevier
ISBN: 0128188308
Category : Science
Languages : en
Pages : 624
Book Description
Laser-Induced Breakdown Spectroscopy, Second Edition, covers the basic principles and latest developments in instrumentation and applications of Laser Induced Breakdown Spectroscopy (LIBS). Written by active experts in the field, it serves as a useful resource for analytical chemists and spectroscopists, as well as graduate students and researchers engaged in the fields of combustion, environmental science, and planetary and space exploration. This fully revised second edition includes several new chapters on new LIBS techniques as well as several new applications, including flame and off-gas measurement, pharmaceutical samples, defense applications, carbon sequestration and site monitoring, handheld instruments, and more. LIBS has rapidly developed into a major analytical technology with the capability of detecting all chemical elements in a sample, of real- time response, and of close-contact or stand-off analysis of targets. It does not require any sample preparation, unlike conventional spectroscopic analytical techniques. Samples in the form of solids, liquids, gels, gases, plasmas, and biological materials (like teeth, leaves, or blood) can be studied with almost equal ease. This comprehensive reference introduces the topic to readers in a simple, direct, and accessible manner for easy comprehension and maximum utility. - Covers even more applications of LIBS beyond the first edition, including combustion, soil physics, environment, and life sciences - Includes new chapters on LIBS techniques that have emerged in the last several years, including Femtosecond LIBS and Molecular LIBS - Provides inspiration for future developments in this rapidly growing field in the concluding chapter