Laser Driven Electron Acceleration in Vacuum, Gases and Plasmas

Laser Driven Electron Acceleration in Vacuum, Gases and Plasmas PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 39

Get Book Here

Book Description
This paper discusses some of the important issues pertaining to laser acceleration in vacuum, neutral gases and plasmas. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage and electron aperture effects, are discussed. An inverse Cherenkov laser acceleration configuration is presented in which a laser beam is self guided in a partially ionized gas. Optical self guiding is the result of a balance between the nonlinear self focusing properties of neutral gases and the diffraction effects of ionization. The stability of self guided beams is analyzed and discussed. In addition, aspects of the laser wakefield accelerator are presented and laser driven accelerator experiments are briefly discussed.

Laser Driven Electron Acceleration in Vacuum, Gases and Plasmas

Laser Driven Electron Acceleration in Vacuum, Gases and Plasmas PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 39

Get Book Here

Book Description
This paper discusses some of the important issues pertaining to laser acceleration in vacuum, neutral gases and plasmas. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage and electron aperture effects, are discussed. An inverse Cherenkov laser acceleration configuration is presented in which a laser beam is self guided in a partially ionized gas. Optical self guiding is the result of a balance between the nonlinear self focusing properties of neutral gases and the diffraction effects of ionization. The stability of self guided beams is analyzed and discussed. In addition, aspects of the laser wakefield accelerator are presented and laser driven accelerator experiments are briefly discussed.

Laser Wakefield Electron Acceleration

Laser Wakefield Electron Acceleration PDF Author: Karl Schmid
Publisher: Springer Science & Business Media
ISBN: 364219950X
Category : Science
Languages : en
Pages : 169

Get Book Here

Book Description
This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four orders of magnitude larger than that attainable by conventional accelerators. This thesis demonstrates that laser pulses with an ultrashort duration of 8 fs and a peak power of 6 TW allow the production of electron energies up to 50 MeV via LWFA. The special properties of laser accelerated electron pulses, namely the ultrashort pulse duration, the high brilliance, and the high charge density, open up new possibilities in many applications of these electron beams.

Laser Acceleration in Vacuum, Gases, and Plasmas Withcapillary Waveguide

Laser Acceleration in Vacuum, Gases, and Plasmas Withcapillary Waveguide PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description
I propose a new method for laser acceleration of relativistic electrons using the leaky modes of a hollow dielectric waveguide. The hollow core of the waveguide can be either in vacuum or filled with uniform gases or plasmas. In case of vacuum and gases, TM01 mode is used for direct acceleration. In case of plasmas, EH11 mode is used to drive longitudinal plasma wave for acceleration. Structure damage due to high power laser can be avoided by choosing a core radius sufficiently larger than laser wavelength. Effect of nonuniform plasma density on waveguide performance is also analyzed.

Laser-Driven Sources of High Energy Particles and Radiation

Laser-Driven Sources of High Energy Particles and Radiation PDF Author: Leonida Antonio Gizzi
Publisher: Springer Nature
ISBN: 3030258505
Category : Science
Languages : en
Pages : 254

Get Book Here

Book Description
This volume presents a selection of articles based on inspiring lectures held at the “Capri” Advanced Summer School, an original event conceived and promoted by Leonida Antonio Gizzi and Ralph Assmann that focuses on novel schemes for plasma-based particle acceleration and radiation sources, and which brings together researchers from the conventional accelerator community and from the high-intensity laser-matter interaction research fields. Training in these fields is highly relevant for ultra-intense lasers and applications, which have enjoyed dramatic growth following the development of major European infrastructures like the Extreme Light Infrastructure (ELI) and the EuPRAXIA project. The articles preserve the tutorial character of the lectures and reflect the latest advances in their respective fields. The volume is mainly intended for PhD students and young researchers getting started in this area, but also for scientists from other fields who are interested in the latest developments. The content will also appeal to radiobiologists and medical physicists, as it includes contributions on potential applications of laser-based particle accelerators.

Laser-driven Electron Acceleration in Infinite Vacuum

Laser-driven Electron Acceleration in Infinite Vacuum PDF Author: Liang Jie Wong
Publisher:
ISBN:
Category :
Languages : en
Pages : 88

Get Book Here

Book Description
I first review basic models for laser-plasma interaction that explain electron acceleration and beam confinement in plasma. Next, I discuss ponderomotive electron acceleration in infinite vacuum, showing that the transverse scattering angle of the accelerated electron may be kept small with a proper choice of parameters. I then analyze the direct (a.k.a. linear) acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam, consequently demonstrating the possibility of accelerating an initially-relativistic electron in vacuum without the use of ponderomotive forces or any optical devices to terminate the laser field. As the Lawson-Woodward theorem has sometimes been cited to discount the possibility of net energy transfer from a laser pulse to a relativistic particle via linear acceleration in unbounded vacuum, I derive an analytical expression (which I verify with numerical simulation results) defining the regime where the Lawson-Woodward theorem in fact allows for this. Finally, I propose a two-color laser-driven direct acceleration scheme in vacuum that can achieve electron acceleration exceeding 90% of the one-color theoretical energy gain limit, over twice of what is possible with a one-color pulsed beam of equal total energy and pulse duration.

Frontiers in High Energy Density Physics

Frontiers in High Energy Density Physics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030908637X
Category : Science
Languages : en
Pages : 177

Get Book Here

Book Description
Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.

The Physics Experiment for a Laser-Driven Electron Accelerator

The Physics Experiment for a Laser-Driven Electron Accelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A physics experiment for laser-driven, electron acceleration in a structure loaded vacuum is being carried out at Stanford University. The experiment is to demonstrate the linear dependence of the electron energy gain on the laser field strength. The accelerator structure, made of dielectric, is semi-open, with dimensions a few thousand times the laser wavelength. The electrons traverse the axis of two crossed laser beams to obtain acceleration within a coherence distance. We predict that the demonstration experiment will produce a single-stage, electron energy gain of 300 keV over a 2.5 mm distance. Ultimately, acceleration gradients of 1 GeV/m should be possible.

Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report

Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 26

Get Book Here

Book Description
This final report summarizes the last three years of research on the development of advanced linear electron accelerators that utilize dielectric wave-guide vacuum channels pumped by high energy laser fields to accelerate beams of electrons.

Physics of Laser-driven Plasma-based Acceleration

Physics of Laser-driven Plasma-based Acceleration PDF Author: Eric Esarey
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

Characteristics of Laser-driven Electron Acceleration Invacuum

Characteristics of Laser-driven Electron Acceleration Invacuum PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The interaction of free electrons with intense laser beamsin vacuum is studied using a 3D test particle simulation model thatsolves the relativistic Newton-Lorentz equations of motion inanalytically specified laser fields. Recently, a group of solutions wasfound for very intense laser fields that show interesting and unusualcharacteristics. In particular, it was found that an electron can becaptured within the high-intensity laser region, rather than expelledfrom it, and the captured electron can be accelerated to GeV energieswith acceleration gradients on the order of tens of GeV/cm. Thisphenomenon is termed the capture and acceleration scenario (CAS) and isstudied in detail in this paper. The maximum net energy exchange by theCAS mechanism is found to be approximately proportional to a 2_o, in theregime where a_o>100, where a_o = eE_o/m_ewc is a dimensionlessparameter specifying the magnitude of the laser field. The acceleratedGeV electron bunch is a macro-pulse, with duration equal or less thanthat of the laser pulse, which is composed of many micro-pulses that areperiodic at the laser frequency. The energy spectrum of the CAS electronbunch is presented. The dependence of the energy exchange in the CAS onvarious parameters, e.g., a 2_o (laser intensity), w_o (laser radius atfocus), tao (laser pulse duration), b_o (the impact parameter), andtheta_i (the injection angle with respect to the laser propagationdirection), are explored in detail. A comparison with diverse theoreticalmodels is also presented, including a classical model based on phasevelocities and a quantum model based on nonlinear Comptonscattering.