Author: Hermann Schlichting (Deceased)
Publisher: Springer
ISBN: 366252919X
Category : Technology & Engineering
Languages : en
Pages : 814
Book Description
This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Boundary-Layer Theory
Author: Hermann Schlichting (Deceased)
Publisher: Springer
ISBN: 366252919X
Category : Technology & Engineering
Languages : en
Pages : 814
Book Description
This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Publisher: Springer
ISBN: 366252919X
Category : Technology & Engineering
Languages : en
Pages : 814
Book Description
This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Introduction to Interactive Boundary Layer Theory
Author: Ian John Sobey
Publisher: OUP Oxford
ISBN: 9780198506751
Category : Mathematics
Languages : en
Pages : 350
Book Description
One of the major achievements in fluid mechanics in the last quarter of the twentieth century has been the development of an asymptotic description of perturbations to boundary layers known generally as 'triple deck theory'. These developments have had a major impact on our understanding of laminar fluid flow, particularly laminar separation. It is also true that the theory rests on three quarters of a century of development of boundary layer theory which involves analysis, experimentation and computation. All these parts go together, and to understand the triple deck it is necessary to understand which problems the triple deck resolves and which computational techniques have been applied. This book presents a unified account of the development of laminar boundary layer theory as a historical study together with a description of the application of the ideas of triple deck theory to flow past a plate, to separation from a cylinder and to flow in channels. The book is intended to provide a graduate level teaching resource as well as a mathematically oriented account for a general reader in applied mathematics, engineering, physics or scientific computation.
Publisher: OUP Oxford
ISBN: 9780198506751
Category : Mathematics
Languages : en
Pages : 350
Book Description
One of the major achievements in fluid mechanics in the last quarter of the twentieth century has been the development of an asymptotic description of perturbations to boundary layers known generally as 'triple deck theory'. These developments have had a major impact on our understanding of laminar fluid flow, particularly laminar separation. It is also true that the theory rests on three quarters of a century of development of boundary layer theory which involves analysis, experimentation and computation. All these parts go together, and to understand the triple deck it is necessary to understand which problems the triple deck resolves and which computational techniques have been applied. This book presents a unified account of the development of laminar boundary layer theory as a historical study together with a description of the application of the ideas of triple deck theory to flow past a plate, to separation from a cylinder and to flow in channels. The book is intended to provide a graduate level teaching resource as well as a mathematically oriented account for a general reader in applied mathematics, engineering, physics or scientific computation.
Recent Advances in Boundary Layer Theory
Author: Alfred Kluwick
Publisher: Springer
ISBN:
Category : Medical
Languages : en
Pages : 344
Book Description
Dedicated to Prof. W.Schneider on the Occasion of his 60th Birthday
Publisher: Springer
ISBN:
Category : Medical
Languages : en
Pages : 344
Book Description
Dedicated to Prof. W.Schneider on the Occasion of his 60th Birthday
Fluid Mechanics for Engineers
Author: Meinhard T. Schobeiri
Publisher: Springer Science & Business Media
ISBN: 3642115942
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.
Publisher: Springer Science & Business Media
ISBN: 3642115942
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.
Laminar Flow Theory
Author: P. A. Lagerstrom
Publisher: Princeton University Press
ISBN: 0691245886
Category : Science
Languages : en
Pages : 288
Book Description
Fluid mechanics is one of the greatest accomplishments of classical physics. The Navier-Stokes equations, first derived in the eighteenth century, serve as an accurate mathematical model with which to describe the flow of a broad class of real fluids. Not only is the subject of interest to mathematicians and physicists, but it is also indispensable to mechanical, aeronautical, and chemical engineers, who have to apply the equations to real-world examples, such as the flow of air around an aircraft wing or the motion of liquid droplets in a suspension. In this book, which first appeared in a comprehensive collection of essays entitled The Theory of Laminar Flows (Princeton, 1964), P. A. Lagerstrom imparts the essential theoretical framework of laminar flows to the reader. A concise and elegant description, Lagerstrom's work remains a model piece of writing and has much to offer today's reader seeking an introduction to the flow of nonturbulent fluids. Beginning with the conservation laws that result in the equation of continuity, the Navier-Stokes equation, and the energy transport equation, Lagerstrom moves on to consider viscous waves, low Reynolds-number approximations such as Stokes flow and the Oseen equations, and then high Reynolds-number approximations that are used to describe boundary layers, jets, and wakes. Finally, he examines some compressibility effects, such as those that occur in the laminar boundary layer around a flat plate, both with and without a pressure gradient.
Publisher: Princeton University Press
ISBN: 0691245886
Category : Science
Languages : en
Pages : 288
Book Description
Fluid mechanics is one of the greatest accomplishments of classical physics. The Navier-Stokes equations, first derived in the eighteenth century, serve as an accurate mathematical model with which to describe the flow of a broad class of real fluids. Not only is the subject of interest to mathematicians and physicists, but it is also indispensable to mechanical, aeronautical, and chemical engineers, who have to apply the equations to real-world examples, such as the flow of air around an aircraft wing or the motion of liquid droplets in a suspension. In this book, which first appeared in a comprehensive collection of essays entitled The Theory of Laminar Flows (Princeton, 1964), P. A. Lagerstrom imparts the essential theoretical framework of laminar flows to the reader. A concise and elegant description, Lagerstrom's work remains a model piece of writing and has much to offer today's reader seeking an introduction to the flow of nonturbulent fluids. Beginning with the conservation laws that result in the equation of continuity, the Navier-Stokes equation, and the energy transport equation, Lagerstrom moves on to consider viscous waves, low Reynolds-number approximations such as Stokes flow and the Oseen equations, and then high Reynolds-number approximations that are used to describe boundary layers, jets, and wakes. Finally, he examines some compressibility effects, such as those that occur in the laminar boundary layer around a flat plate, both with and without a pressure gradient.
Fundamentals of Incompressible Fluid Flow
Author: V. Babu
Publisher: Springer Nature
ISBN: 3030746569
Category : Technology & Engineering
Languages : en
Pages : 201
Book Description
This highly informative and carefully presented book offers a comprehensive overview of the fundamentals of incompressible fluid flow. The textbook focuses on foundational topics to more complex subjects such as the derivation of Navier-Stokes equations, perturbation solutions, inviscid outer and inner solutions, turbulent flows, etc. The author has included end-of-chapter problems and worked examples to augment learning and self-testing. This book will be a useful reference for students in the area of mechanical and aerospace engineering.
Publisher: Springer Nature
ISBN: 3030746569
Category : Technology & Engineering
Languages : en
Pages : 201
Book Description
This highly informative and carefully presented book offers a comprehensive overview of the fundamentals of incompressible fluid flow. The textbook focuses on foundational topics to more complex subjects such as the derivation of Navier-Stokes equations, perturbation solutions, inviscid outer and inner solutions, turbulent flows, etc. The author has included end-of-chapter problems and worked examples to augment learning and self-testing. This book will be a useful reference for students in the area of mechanical and aerospace engineering.
Intermediate Fluid Mechanics
Author: James Liburdy
Publisher:
ISBN: 9781955101103
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781955101103
Category :
Languages : en
Pages :
Book Description
Modeling and Computation of Boundary-Layer Flows
Author: Tuncer Cebeci
Publisher: Springer
ISBN: 9783540807315
Category : Science
Languages : en
Pages : 502
Book Description
This second edition of the book, Modeling and Computation of Boundary-Layer Flows^ extends the topic to include compressible flows. This implies the inclusion of the energy equation and non-constant fluid properties in the continuity and momentum equations. The necessary additions are included in new chapters, leaving the first nine chapters to serve as an introduction to incompressible flows and, therefore, as a platform for the extension. This part of the book can be used for a one semester course as described below. Improvements to the incompressible flows portion of the book include the removal of listings of computer programs and their description, and their incor poration in two CD-ROMs. A listing of the topics incorporated in the CD-ROM is provided before the index. In Chapter 7 there is a more extended discussion of initial conditions for three-dimensional flows, application of the characteristic box to a model problem and discussion of flow separation in three-dimensional laminar flows. There are also changes to Chapter 8, which now includes new sections on Tollmien-Schlichting and cross-flow instabilities and on the predic tion of transition with parabolised stability equations, and Chapter 9 provides a description of the rational behind interactive boundary-layer procedures.
Publisher: Springer
ISBN: 9783540807315
Category : Science
Languages : en
Pages : 502
Book Description
This second edition of the book, Modeling and Computation of Boundary-Layer Flows^ extends the topic to include compressible flows. This implies the inclusion of the energy equation and non-constant fluid properties in the continuity and momentum equations. The necessary additions are included in new chapters, leaving the first nine chapters to serve as an introduction to incompressible flows and, therefore, as a platform for the extension. This part of the book can be used for a one semester course as described below. Improvements to the incompressible flows portion of the book include the removal of listings of computer programs and their description, and their incor poration in two CD-ROMs. A listing of the topics incorporated in the CD-ROM is provided before the index. In Chapter 7 there is a more extended discussion of initial conditions for three-dimensional flows, application of the characteristic box to a model problem and discussion of flow separation in three-dimensional laminar flows. There are also changes to Chapter 8, which now includes new sections on Tollmien-Schlichting and cross-flow instabilities and on the predic tion of transition with parabolised stability equations, and Chapter 9 provides a description of the rational behind interactive boundary-layer procedures.
Boundary Layer Flows
Author: Vallampati Ramachandra Prasad
Publisher: BoD – Books on Demand
ISBN: 1839681853
Category : Mathematics
Languages : en
Pages : 236
Book Description
Written by experts in the field, this book, "Boundary Layer Flows - Theory, Applications, and Numerical Methods" provides readers with the opportunity to explore its theoretical and experimental studies and their importance to the nonlinear theory of boundary layer flows, the theory of heat and mass transfer, and the dynamics of fluid. With the theory's importance for a wide variety of applications, applied mathematicians, scientists, and engineers - especially those in fluid dynamics - along with engineers of aeronautics, will undoubtedly welcome this authoritative, up-to-date book.
Publisher: BoD – Books on Demand
ISBN: 1839681853
Category : Mathematics
Languages : en
Pages : 236
Book Description
Written by experts in the field, this book, "Boundary Layer Flows - Theory, Applications, and Numerical Methods" provides readers with the opportunity to explore its theoretical and experimental studies and their importance to the nonlinear theory of boundary layer flows, the theory of heat and mass transfer, and the dynamics of fluid. With the theory's importance for a wide variety of applications, applied mathematicians, scientists, and engineers - especially those in fluid dynamics - along with engineers of aeronautics, will undoubtedly welcome this authoritative, up-to-date book.
Basics of Engineering Turbulence
Author: David Ting
Publisher: Academic Press
ISBN: 0128039833
Category : Science
Languages : en
Pages : 258
Book Description
Basics of Engineering Turbulence introduces flow turbulence to engineers and engineering students who have a fluid dynamics background, but do not have advanced knowledge on the subject. It covers the basic characteristics of flow turbulence in terms of its many scales. The author uses a pedagogical approach to help readers better understand the fundamentals of turbulence scales, especially how they are derived through the order of magnitude analysis. This book is intended for those who have an interest in flowing fluids. It provides some background, though of limited scope, on everyday flow turbulence, especially in engineering applications. The book begins with the 'basics' of turbulence which is necessary for any reader being introduced to the subject, followed by several examples of turbulence in engineering applications. This overall approach gives readers all they need to grasp both the fundamentals of turbulence and its applications in practical instances. - Focuses on the basics of turbulence for applications in engineering and industrial settings - Provides an understanding of concepts that are often challenging, such as energy distribution among the turbulent structures, the effective diffusivity, and the theory behind turbulence scales - Offers a user-friendly approach with clear-and-concise explanations and illustrations, as well as end-of-chapter problems
Publisher: Academic Press
ISBN: 0128039833
Category : Science
Languages : en
Pages : 258
Book Description
Basics of Engineering Turbulence introduces flow turbulence to engineers and engineering students who have a fluid dynamics background, but do not have advanced knowledge on the subject. It covers the basic characteristics of flow turbulence in terms of its many scales. The author uses a pedagogical approach to help readers better understand the fundamentals of turbulence scales, especially how they are derived through the order of magnitude analysis. This book is intended for those who have an interest in flowing fluids. It provides some background, though of limited scope, on everyday flow turbulence, especially in engineering applications. The book begins with the 'basics' of turbulence which is necessary for any reader being introduced to the subject, followed by several examples of turbulence in engineering applications. This overall approach gives readers all they need to grasp both the fundamentals of turbulence and its applications in practical instances. - Focuses on the basics of turbulence for applications in engineering and industrial settings - Provides an understanding of concepts that are often challenging, such as energy distribution among the turbulent structures, the effective diffusivity, and the theory behind turbulence scales - Offers a user-friendly approach with clear-and-concise explanations and illustrations, as well as end-of-chapter problems