Author: Nicholas E. Leadbeater
Publisher: CRC Press
ISBN: 1439856109
Category : Science
Languages : en
Pages : 234
Book Description
Allowing many chemical reactions to be completed within minutes, microwave heating has revolutionized preparative chemistry. As a result, this technology has been widely adopted in both academic and industrial laboratories. Integrating microwave-assisted chemistry into undergraduate laboratory courses enables students to perform a broader range of
Laboratory Experiments Using Microwave Heating
Author: Nicholas E. Leadbeater
Publisher: CRC Press
ISBN: 1439856109
Category : Science
Languages : en
Pages : 234
Book Description
Allowing many chemical reactions to be completed within minutes, microwave heating has revolutionized preparative chemistry. As a result, this technology has been widely adopted in both academic and industrial laboratories. Integrating microwave-assisted chemistry into undergraduate laboratory courses enables students to perform a broader range of
Publisher: CRC Press
ISBN: 1439856109
Category : Science
Languages : en
Pages : 234
Book Description
Allowing many chemical reactions to be completed within minutes, microwave heating has revolutionized preparative chemistry. As a result, this technology has been widely adopted in both academic and industrial laboratories. Integrating microwave-assisted chemistry into undergraduate laboratory courses enables students to perform a broader range of
Laboratory Experiments Using Microwave Heating
Author: Nicholas E. Leadbeater
Publisher: CRC Press
ISBN: 1439856095
Category : Science
Languages : en
Pages : 234
Book Description
Allowing many chemical reactions to be completed within minutes, microwave heating has revolutionized preparative chemistry. As a result, this technology has been widely adopted in both academic and industrial laboratories. Integrating microwave-assisted chemistry into undergraduate laboratory courses enables students to perform a broader range of reactions in the allotted lab period. As a result, they can be introduced to chemistry that would otherwise have been inaccessible due to time constraints (for example, the need for an overnight reflux). Laboratory Experiments Using Microwave Heating provides 22 experiments encompassing organic, inorganic, and analytical chemistry performed using microwave heating as a tool, making them fast and easy to accomplish in a laboratory period. Utilizing the time-saving experiments described in this book also permits students to repeat experiments if necessary or attempt additional self-designed experiments during the lab course. A number of the chemical transformations use water as a solvent in lieu of classical organic solvents. This contributes to greener, more sustainable teaching strategies for faculty and students, while maintaining high reaction yields. All the experiments have been tested and verified in laboratory classes, and many were even developed by students. Each chapter includes an introduction to the experiment and two protocols—one for use with a smaller monomode microwave unit employing a single reaction vessel and one for use with a larger multimode microwave unit employing a carousel of reaction vessels.
Publisher: CRC Press
ISBN: 1439856095
Category : Science
Languages : en
Pages : 234
Book Description
Allowing many chemical reactions to be completed within minutes, microwave heating has revolutionized preparative chemistry. As a result, this technology has been widely adopted in both academic and industrial laboratories. Integrating microwave-assisted chemistry into undergraduate laboratory courses enables students to perform a broader range of reactions in the allotted lab period. As a result, they can be introduced to chemistry that would otherwise have been inaccessible due to time constraints (for example, the need for an overnight reflux). Laboratory Experiments Using Microwave Heating provides 22 experiments encompassing organic, inorganic, and analytical chemistry performed using microwave heating as a tool, making them fast and easy to accomplish in a laboratory period. Utilizing the time-saving experiments described in this book also permits students to repeat experiments if necessary or attempt additional self-designed experiments during the lab course. A number of the chemical transformations use water as a solvent in lieu of classical organic solvents. This contributes to greener, more sustainable teaching strategies for faculty and students, while maintaining high reaction yields. All the experiments have been tested and verified in laboratory classes, and many were even developed by students. Each chapter includes an introduction to the experiment and two protocols—one for use with a smaller monomode microwave unit employing a single reaction vessel and one for use with a larger multimode microwave unit employing a carousel of reaction vessels.
Microwave Chemical and Materials Processing
Author: Satoshi Horikoshi
Publisher: Springer Nature
ISBN: 9819757959
Category :
Languages : en
Pages : 495
Book Description
Publisher: Springer Nature
ISBN: 9819757959
Category :
Languages : en
Pages : 495
Book Description
Laboratory Experiments
Author: Leadbeater
Publisher:
ISBN: 9781138455948
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781138455948
Category :
Languages : en
Pages :
Book Description
Microwave Processing of Materials
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309050278
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
Microwaves can be effectively used in the processing of industrial materials under a wide range of conditions. However, microwave processing is complex and multidisciplinary in nature, and a high degree of technical knowledge is needed to determine how, when, and where the technology can be most profitably utilized. This book assesses the potential of microwave technology for industrial applications, reviews the latest equipment and processing methods, and identifies both the gaps in understanding of microwave processing technology and the promising development opportunities that take advantage of this new technology's unique performance characteristics.
Publisher: National Academies Press
ISBN: 0309050278
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
Microwaves can be effectively used in the processing of industrial materials under a wide range of conditions. However, microwave processing is complex and multidisciplinary in nature, and a high degree of technical knowledge is needed to determine how, when, and where the technology can be most profitably utilized. This book assesses the potential of microwave technology for industrial applications, reviews the latest equipment and processing methods, and identifies both the gaps in understanding of microwave processing technology and the promising development opportunities that take advantage of this new technology's unique performance characteristics.
Practical Microwave Synthesis for Organic Chemists
Author: C. Oliver Kappe
Publisher: John Wiley & Sons
ISBN: 3527623914
Category : Science
Languages : en
Pages : 310
Book Description
With the novice user in mind, this beginner's guide explains thebasics behind microwave technology, evaluates available instrumentsand reaction modes, and provides practical hints for everyeventuality. Includes 27 detailed protocols for often-usedreactions. From the contents: 1 Microwave Synthesis - An Introduction 2 Microwave Theory 3 Equipment Review 4 Microwave Processing Techniques 5 Starting With Microwave Chemistry 6 Experimental Protocols 6.1 General Small-Scale Sealed-Vessel Microwave Processing 6.2 Reaction Optimization 6.3 Library Generation 6.4 Reaction Scale-Up 6.5 Special Processing Techniques
Publisher: John Wiley & Sons
ISBN: 3527623914
Category : Science
Languages : en
Pages : 310
Book Description
With the novice user in mind, this beginner's guide explains thebasics behind microwave technology, evaluates available instrumentsand reaction modes, and provides practical hints for everyeventuality. Includes 27 detailed protocols for often-usedreactions. From the contents: 1 Microwave Synthesis - An Introduction 2 Microwave Theory 3 Equipment Review 4 Microwave Processing Techniques 5 Starting With Microwave Chemistry 6 Experimental Protocols 6.1 General Small-Scale Sealed-Vessel Microwave Processing 6.2 Reaction Optimization 6.3 Library Generation 6.4 Reaction Scale-Up 6.5 Special Processing Techniques
Catalysis
Author: James J Spivey
Publisher: Royal Society of Chemistry
ISBN: 1839163127
Category : Science
Languages : en
Pages : 494
Book Description
This volume looks at modern approaches to catalysis and reviews the extensive literature. Chapters highlight application of 2D materials in biomass conversion catalysis, plasmonic photocatalysis, catalytic demonstration of mesoporosity in the hierarchical zeolite and the effect of surface phase oxides on supported metals and catalysis. Looking to the future a chapter on ab initio machine learning for accelerating catalytic materials discovery is included. Appealing broadly to researchers in academia and industry, these illustrative chapters bridge the gap from academic studies in the laboratory to practical applications in industry not only for catalysis field but also for environmental protection. Other chapters with an industrial perspective include heterogeneous and homogeneous catalytic routes for vinyl acetate synthesis, catalysis for production of jet fuel from renewable sources by HDO/HDC and microwave-assisted catalysis for fuel conversion. Chemical reactions in ball mills is also explored. The book will be of great benefit to any researcher wanting a succinct reference on developments in this area now and looking to the future.
Publisher: Royal Society of Chemistry
ISBN: 1839163127
Category : Science
Languages : en
Pages : 494
Book Description
This volume looks at modern approaches to catalysis and reviews the extensive literature. Chapters highlight application of 2D materials in biomass conversion catalysis, plasmonic photocatalysis, catalytic demonstration of mesoporosity in the hierarchical zeolite and the effect of surface phase oxides on supported metals and catalysis. Looking to the future a chapter on ab initio machine learning for accelerating catalytic materials discovery is included. Appealing broadly to researchers in academia and industry, these illustrative chapters bridge the gap from academic studies in the laboratory to practical applications in industry not only for catalysis field but also for environmental protection. Other chapters with an industrial perspective include heterogeneous and homogeneous catalytic routes for vinyl acetate synthesis, catalysis for production of jet fuel from renewable sources by HDO/HDC and microwave-assisted catalysis for fuel conversion. Chemical reactions in ball mills is also explored. The book will be of great benefit to any researcher wanting a succinct reference on developments in this area now and looking to the future.
Microwave Assisted Organic Synthesis
Author: Jason Tierney
Publisher: John Wiley & Sons
ISBN: 1405168447
Category : Science
Languages : en
Pages : 296
Book Description
The first reports on the application of microwaves in organicsynthesis date back to 1986, but it was not until the recentintroduction of specifically designed and constructed equipment,which countered the safety and reproducibility concerns, thatsynthetic application of microwaves has become established as alaboratory technique. Microwave assisted synthesis is now beingadopted in many industrial and academic laboratories to takeadvantage of the novel chemistry that can be carried out using avariety of organic reaction types. This book demonstrates the underlying principles of microwavedielectric heating and, by reference to a range of organic reactiontypes, it's effective use in synthetic organic chemistry. Toillustrate the impact microwave assisted organic synthesis can haveon chemical research, case studies drawn mainly from thepharmaceutical industry are presented.
Publisher: John Wiley & Sons
ISBN: 1405168447
Category : Science
Languages : en
Pages : 296
Book Description
The first reports on the application of microwaves in organicsynthesis date back to 1986, but it was not until the recentintroduction of specifically designed and constructed equipment,which countered the safety and reproducibility concerns, thatsynthetic application of microwaves has become established as alaboratory technique. Microwave assisted synthesis is now beingadopted in many industrial and academic laboratories to takeadvantage of the novel chemistry that can be carried out using avariety of organic reaction types. This book demonstrates the underlying principles of microwavedielectric heating and, by reference to a range of organic reactiontypes, it's effective use in synthetic organic chemistry. Toillustrate the impact microwave assisted organic synthesis can haveon chemical research, case studies drawn mainly from thepharmaceutical industry are presented.
Aqueous Microwave Assisted Chemistry
Author: Vivek Polshettiwar
Publisher: Royal Society of Chemistry
ISBN: 1849730997
Category : Science
Languages : en
Pages : 243
Book Description
The demands for green and sustainable synthetic methods in the fields of healthcare and fine chemicals, combined with the pressure to produce these substances expeditiously and in an environmentally benign fashion, pose significant challenges to the synthetic chemical community. Green chemistry can avoid pollution by utilizing techniques that are environmentally friendly by design and one of the best green techniques is the use of microwave (MW) assisted aqueous synthetic protocols. Fusing MW technique with water (as a benign reaction medium) can offer an extraordinary synergistic effect with greater potential than these two individual components in isolation. Selective microwave heating can be exploited to develop a high yield protocol and the use of water expedites the MW-protocol with more energy efficiency. This book provides an overview of the various processes developed using aqueous microwave chemistry and is written for chemists, chemical engineers and researchers in the early stages who want to develop sustainable and green processes. Written by well known microwave experts, the book is a comprehensive examination of the field and is the first book that deals strictly with aqueous microwave chemistry and represents a significant effort towards green chemistry. It covers all the microwave-assisted aqueous reactions in depth, including heterocycle synthesis, metal catalysis, enzyme catalysis, polymer synthesis, nanomaterials synthesis and nano-catalysis. Each chapter contains representative experimental procedures, helping the reader quickly replicate some of the experiments to gain hands-on experience.
Publisher: Royal Society of Chemistry
ISBN: 1849730997
Category : Science
Languages : en
Pages : 243
Book Description
The demands for green and sustainable synthetic methods in the fields of healthcare and fine chemicals, combined with the pressure to produce these substances expeditiously and in an environmentally benign fashion, pose significant challenges to the synthetic chemical community. Green chemistry can avoid pollution by utilizing techniques that are environmentally friendly by design and one of the best green techniques is the use of microwave (MW) assisted aqueous synthetic protocols. Fusing MW technique with water (as a benign reaction medium) can offer an extraordinary synergistic effect with greater potential than these two individual components in isolation. Selective microwave heating can be exploited to develop a high yield protocol and the use of water expedites the MW-protocol with more energy efficiency. This book provides an overview of the various processes developed using aqueous microwave chemistry and is written for chemists, chemical engineers and researchers in the early stages who want to develop sustainable and green processes. Written by well known microwave experts, the book is a comprehensive examination of the field and is the first book that deals strictly with aqueous microwave chemistry and represents a significant effort towards green chemistry. It covers all the microwave-assisted aqueous reactions in depth, including heterocycle synthesis, metal catalysis, enzyme catalysis, polymer synthesis, nanomaterials synthesis and nano-catalysis. Each chapter contains representative experimental procedures, helping the reader quickly replicate some of the experiments to gain hands-on experience.
Production of Biofuels and Chemicals with Microwave
Author: Zhen Fang
Publisher: Springer
ISBN: 9401796122
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Conversion of biomass into chemicals and biofuels is an active research and development area as trends move to replace traditional fossil fuels with renewable resources. By integrating processing methods with microwave and ultrasound irradiation into biorefineries, the time-scale of many operations can be greatly reduced while the efficiency of the reactions can be remarkably increased so that process intensification can be achieved. “Production of Biofuels and Chemicals with Microwave” and “Production of Biofuels and Chemicals with Ultrasound” are two independent volumes in the Biofuels and Biorefineries series that take different, but complementary approaches for the pretreatment and chemical transformation of biomass into chemicals and biofuels. The volume “Microwave” provides current research advances and prospects in theoretical and practical aspects of microwave irradiation including properties, effects and temperature monitoring, design of chemical reactors, synergistic effects on combining microwave, ultrasound, hydrodynamic cavitation and high-shear mixing into processes, chemical and catalytic conversion of lignin into chemicals, pyrolysis and gasification, syngas production from wastes, platform chemicals, algal biodiesel, cellulose-based nanocomposites, lignocellulosic biomass pretreatment, green chemistry metrics and energy consumption and techno-economic analysis for a catalytic pyrolysis facility that processes pellets into aromatics. Each of the 12 chapters has been peer-reviewed and edited to improve both the quality of the text and the scope and coverage of the topics. Both volumes “Microwave” and “Ultrasound” are references designed for students, researchers, academicians and industrialists in the fields of chemistry and chemical engineering and include introductory chapters to highlight present concepts of the fundamental technologies and their application. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.
Publisher: Springer
ISBN: 9401796122
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Conversion of biomass into chemicals and biofuels is an active research and development area as trends move to replace traditional fossil fuels with renewable resources. By integrating processing methods with microwave and ultrasound irradiation into biorefineries, the time-scale of many operations can be greatly reduced while the efficiency of the reactions can be remarkably increased so that process intensification can be achieved. “Production of Biofuels and Chemicals with Microwave” and “Production of Biofuels and Chemicals with Ultrasound” are two independent volumes in the Biofuels and Biorefineries series that take different, but complementary approaches for the pretreatment and chemical transformation of biomass into chemicals and biofuels. The volume “Microwave” provides current research advances and prospects in theoretical and practical aspects of microwave irradiation including properties, effects and temperature monitoring, design of chemical reactors, synergistic effects on combining microwave, ultrasound, hydrodynamic cavitation and high-shear mixing into processes, chemical and catalytic conversion of lignin into chemicals, pyrolysis and gasification, syngas production from wastes, platform chemicals, algal biodiesel, cellulose-based nanocomposites, lignocellulosic biomass pretreatment, green chemistry metrics and energy consumption and techno-economic analysis for a catalytic pyrolysis facility that processes pellets into aromatics. Each of the 12 chapters has been peer-reviewed and edited to improve both the quality of the text and the scope and coverage of the topics. Both volumes “Microwave” and “Ultrasound” are references designed for students, researchers, academicians and industrialists in the fields of chemistry and chemical engineering and include introductory chapters to highlight present concepts of the fundamental technologies and their application. Dr. Zhen Fang is Professor in Bioenergy, Leader and founder of biomass group, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden and is also adjunct Professor of Life Sciences, University of Science and Technology of China. Dr. Richard L Smith, Jr. is Professor of Chemical Engineering, Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Dr. Xinhua Qi is Professor of Environmental Science, Nankai University, China.