LA-ICP-MS Zircon Geochronology of Granulite Xenoliths from the Geronimo Volcanic Field, SE Arizona

LA-ICP-MS Zircon Geochronology of Granulite Xenoliths from the Geronimo Volcanic Field, SE Arizona PDF Author: Mikaela Alaine Rader
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Lower crustal granulite xenoliths entrained in alkaline basalts from the Geronimo Volcanic Field (GVF), SE Arizona, provide constraints on composition, structure, and age of the lower crust in the southern Basin and Range. The GVF is located in the Mazatzal Province, accreted to the southern margin of Laurentia at ~1.69-1.65 Ga. Previous work conducted in this area provided information on the petrology, geochemistry and geothermometry for the xenolith suite, but age constraints of the xenoliths were limited to Nd model ages, making it difficult to place the evolution of the lower crust in the broader context of the geologic history of the region. This project uses zircon U-Pb geochronology and Hf-isotope analysis to determine the age of formation of GVF lower crust, as well as provide evidence for subsequent tectonic events that impacted its composition. Samples for this suite range in composition from mafic meta-cumulates (plg + cpx ± opx ± ol ± sp) to metadiorites and quartzofeldspathic lithologies (plg + kspar + cpx + ox ± qtz ± opx). GVF xenoliths analyzed for U-Pb geochronology present three distinct zircon age populations at ~1.63-1.65 Ga, ~1.48-1.42 Ga, and ~76-2 Ma, with the majority of young ages concentrated between 35-25 Ma. Zircon U-Pb ages for quartzofeldspathic lithologies present evidence of an event at ~1.65 Ga, suggesting an age of formation consistent with the age of the Mazatzal terrane. However, one quartzofeldspathic zircon core was dated at 2.38 Ga, suggesting the presence of an older component during formation of the Mazatzal crust, possibly originating as cratonic Laurentian sediment. Two quartzofeldspathic xenoliths (MR-GN21-39 and MR-GN21-53) contain zircon cores with discordant U-Pb ages that trend toward ~1.48-1.42 Ga, suggesting modification of the Mazatzal terrane beginning at ~1.48 Ga, the onset of the Picuris Orogeny and widespread 1.48-1.35 Ga plutonism in the southwestern US. These same quartzofeldspathic samples present young ages ranging from ~50-15 Ma, suggesting later alteration of the Proterozoic terrane by Tertiary magmatism associated with Farallon slab subduction. Metadiorites, which were previously inferred to be ~ 1.4 Ga on the basis of whole rock Nd model ages, yielded zircon U-Pb ages ranging from ~76 to 2 Ma, suggesting an origin through thermal resetting of zircons in older Paleoproterozoic crust or addition of new juvenile melts that assimilated Paleoproterozoic crust during magmatic underplating in the Cenozoic. Zircon Hf isotope data from both quartzofeldspathic and metadiorite lithologies are consistent with mantle separation at 2.4 Ga, following an intermediate (176Lu/177Hf = 0.018) crustal isotope evolution path. The existence of positive [epsilon]Hf(t) values in Mesoproterozoic zircon cores of some quartzofeldspathic xenoliths suggest reworking of this older Paleoproterozoic crust sometime between the time of Mazatzal formation and the 1.4 Ga Picuris orogeny and/or the widespread A-type granite event that also occurred across Laurentia at about this time. Eocene to Oligocene age zircons have [epsilon]Hf(t) values that range from -17 to 0, suggesting significant lower crustal modification during Farallon slab subduction.

LA-ICP-MS Zircon Geochronology of Granulite Xenoliths from the Geronimo Volcanic Field, SE Arizona

LA-ICP-MS Zircon Geochronology of Granulite Xenoliths from the Geronimo Volcanic Field, SE Arizona PDF Author: Mikaela Alaine Rader
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Lower crustal granulite xenoliths entrained in alkaline basalts from the Geronimo Volcanic Field (GVF), SE Arizona, provide constraints on composition, structure, and age of the lower crust in the southern Basin and Range. The GVF is located in the Mazatzal Province, accreted to the southern margin of Laurentia at ~1.69-1.65 Ga. Previous work conducted in this area provided information on the petrology, geochemistry and geothermometry for the xenolith suite, but age constraints of the xenoliths were limited to Nd model ages, making it difficult to place the evolution of the lower crust in the broader context of the geologic history of the region. This project uses zircon U-Pb geochronology and Hf-isotope analysis to determine the age of formation of GVF lower crust, as well as provide evidence for subsequent tectonic events that impacted its composition. Samples for this suite range in composition from mafic meta-cumulates (plg + cpx ± opx ± ol ± sp) to metadiorites and quartzofeldspathic lithologies (plg + kspar + cpx + ox ± qtz ± opx). GVF xenoliths analyzed for U-Pb geochronology present three distinct zircon age populations at ~1.63-1.65 Ga, ~1.48-1.42 Ga, and ~76-2 Ma, with the majority of young ages concentrated between 35-25 Ma. Zircon U-Pb ages for quartzofeldspathic lithologies present evidence of an event at ~1.65 Ga, suggesting an age of formation consistent with the age of the Mazatzal terrane. However, one quartzofeldspathic zircon core was dated at 2.38 Ga, suggesting the presence of an older component during formation of the Mazatzal crust, possibly originating as cratonic Laurentian sediment. Two quartzofeldspathic xenoliths (MR-GN21-39 and MR-GN21-53) contain zircon cores with discordant U-Pb ages that trend toward ~1.48-1.42 Ga, suggesting modification of the Mazatzal terrane beginning at ~1.48 Ga, the onset of the Picuris Orogeny and widespread 1.48-1.35 Ga plutonism in the southwestern US. These same quartzofeldspathic samples present young ages ranging from ~50-15 Ma, suggesting later alteration of the Proterozoic terrane by Tertiary magmatism associated with Farallon slab subduction. Metadiorites, which were previously inferred to be ~ 1.4 Ga on the basis of whole rock Nd model ages, yielded zircon U-Pb ages ranging from ~76 to 2 Ma, suggesting an origin through thermal resetting of zircons in older Paleoproterozoic crust or addition of new juvenile melts that assimilated Paleoproterozoic crust during magmatic underplating in the Cenozoic. Zircon Hf isotope data from both quartzofeldspathic and metadiorite lithologies are consistent with mantle separation at 2.4 Ga, following an intermediate (176Lu/177Hf = 0.018) crustal isotope evolution path. The existence of positive [epsilon]Hf(t) values in Mesoproterozoic zircon cores of some quartzofeldspathic xenoliths suggest reworking of this older Paleoproterozoic crust sometime between the time of Mazatzal formation and the 1.4 Ga Picuris orogeny and/or the widespread A-type granite event that also occurred across Laurentia at about this time. Eocene to Oligocene age zircons have [epsilon]Hf(t) values that range from -17 to 0, suggesting significant lower crustal modification during Farallon slab subduction.

Limnogeology: Progress, Challenges and Opportunities

Limnogeology: Progress, Challenges and Opportunities PDF Author: Michael R. Rosen
Publisher: Springer Nature
ISBN: 3030665763
Category : Science
Languages : en
Pages : 592

Get Book Here

Book Description
This book honors the career of Professor Elizabeth Gierlowski-Kordesch who was a pioneer and leader in the field of limnogeology since the 1980s. Her work was instrumental in guiding students and professionals in the field until her untimely death in 2016. This collection of chapters was written by her colleagues and students and recognize the important role that Professor Gierlowski-Kordesch had in advancing the field of limnogeology. The chapters show the breadth of her reach as these have been contributed from virtually every continent. This book will be a primary reference for scientists, professionals and graduate students who are interested in the latest advances in limnogeologic processes and basin descriptions in North and South America, Europe, Africa, and China. *Free supplementary material available online for chapters 3,11,12 and 13. Access by searching for the book on link.springer.com

Crustal Permeability

Crustal Permeability PDF Author: Tom Gleeson
Publisher: John Wiley & Sons
ISBN: 111916656X
Category : Technology & Engineering
Languages : en
Pages : 557

Get Book Here

Book Description
Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures. The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration. Although there are thousands of research papers on crustal permeability, this is the first book-length treatment. This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions.

Coastal Hydrogeology

Coastal Hydrogeology PDF Author: Jimmy Jiao
Publisher: Cambridge University Press
ISBN: 1107030595
Category : Business & Economics
Languages : en
Pages : 421

Get Book Here

Book Description
Offers a comprehensive volume discussing groundwater problems in coastal areas, spanning fundamental science to practical water management.

Intro to Geometry

Intro to Geometry PDF Author: Mary Lee Vivian
Publisher: Instructional Fair
ISBN: 9780742417779
Category : Geometry
Languages : en
Pages : 0

Get Book Here

Book Description
A top-selling teacher resource line The 100+ Series(TM) features over 100 reproducible activities in each book! Intro to Geometry links all the activities to the NCTM Standards and is designed to provide students with practice in the skill areas required

Minerals at the Nanoscale

Minerals at the Nanoscale PDF Author: F. Nieto
Publisher: The Mineralogical Society of Great Britain and Ireland
ISBN: 0903056348
Category : Science
Languages : en
Pages : 456

Get Book Here

Book Description
The editors have gathered in this book, reviews of past and current studies of mineral groups that have played important roles in geology, environmental science and health science. The various chapters cover the application of TEM and related techniques to: mineral groups in which TEM investigations have been extensive and crucial to the understanding of their mineralogy, namely pyriboles, serpentines, clays, micas and other metamorphic phyllosilicates, oxides and oxyhydroxides, sulfides and carbonates. Some research fields for which TEM is particularly suitable and which have produced significant advances, in particular, are inclusions and traces, extraterrestrial material, deformation processes, non-stoichiometry and superstructures, and biominerals. Nowadays, we are witnessing the push for the improvement of detectors for imaging (direct detection of electrons) and X-rays (silicon drift detectors and annular high solid-angle of collection detectors), the development of new support materials (e.g. graphene) and liquid cells for TEMs. Most of these new technologies have not yet been applied to mineralogical problems but we hope they will be in the near future.

Petrochronology

Petrochronology PDF Author: Matthew J. Kohn
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110561891
Category : Science
Languages : en
Pages : 596

Get Book Here

Book Description
Petrochronology is a rapidly emerging branch of Earth science that links time (ages or rates) with specific rock-forming processes and their physical conditions. It is founded in petrology and geochemistry, which define a petrogenetic context or delimit a specific process, to which chronometric data are then linked. This combination informs Earth’s petrogenetic processes better than petrology or geochronology alone. This volume and the accompanying short courses address three broad categories of inquiry. Conceptual approaches chapters include petrologic modeling of multi-component chemical and mineralogic systems, and development of methods that include diffusive alteration of mineral chemistry. Methods chapters address four main analytical techniques, specifically EPMA, LA-ICP-MS, SIMS and TIMS. Mineral-specific chapters explore applications to a wide range of minerals, including zircon (metamorphic, igneous, and detrital/Hadean), baddeleyite, REE minerals (monazite, allanite, xenotime and apatite), titanite, rutile, garnet, and major igneous minerals (olivine, plagioclase and pyroxenes). These applications mainly focus on metamorphic, igneous, or tectonic processes, but additionally elucidate fundamental transdisciplinary progress in addressing mechanisms of crystal growth, the chemical consequences of mineral growth kinetics, and how chemical transport and deformation affect chemically complex mineral composites. Most chapters further recommend areas of future research.

Terrestrial Trace Fossils

Terrestrial Trace Fossils PDF Author: William Antony S. Sarjeant
Publisher: Stroudsburg, Pa. : Hutchinson Ross Publishing Company ; New York, NY : Distributed worldwide by Van Nostrand Reinhold
ISBN:
Category : Science
Languages : en
Pages : 440

Get Book Here

Book Description


Sediment Routing Systems

Sediment Routing Systems PDF Author: Philip A. Allen
Publisher: Cambridge University Press
ISBN: 1107091993
Category : Business & Economics
Languages : en
Pages : 423

Get Book Here

Book Description
This cutting-edge summary combines ideas from several sub-disciplines to provide an understanding of sediment routing systems and Earth surface dynamics.

Geology and Health

Geology and Health PDF Author: H. Catherine W. Skinner
Publisher: New York : Oxford University Press
ISBN: 0195162048
Category : Environmental health
Languages : en
Pages : 192

Get Book Here

Book Description
Geology and Health is an integration of papers from geo-bio-chemical scientists on health issues of concern to humankind worldwide, demonstrating how the health and well-being of populations now and in the future can benefit through coordinated scientific efforts. International examples on dusts, coal, arsenic, fluorine, lead, mercury, and water borne chemicals, that lead to health effects are documented and explored. They were selected to illustrate how hazards and potential hazards may be from natural materials and processes and how anthropomorphic changes may have contributed to disease and debilitation instead of solutions. Introductory essays by the editors highlight some of the progress toward scientific integration that could be applied to other geographic sites and research efforts. A global purview and integration of earth and health sciences expertise could benefit the future of populations from many countries. Effective solutions to combat present and future hazards will arise when the full scope of human interactions with the total environment is appreciated by the wide range of people in positions to make important and probably expensive decisions. A case to illustrate the point of necessary crossover between Geology and Health was the drilling of shallow tube wells in Bangladesh to provide non-contaminated ground water. This "good" solution unfortunately mobilized arsenic from rocks into the aquifer and created an unforeseen or 'silent' hazard: arsenic. Geologists produce maps of earth materials and are concerned with natural processes in the environment with long time-frame horizons. The health effects encountered through changing the water source might have been avoided if the hydrological characteristics of the Bangladesh delta had been known and any chemical hazards had been investigated and documented. A recurrence of this type of oversight should be avoidable when responsible parties, often government officials, appreciate the necessity of such integrated efforts. The book extols the virtues of cooperation between the earth, life and health sciences, as the most practical approach to better public health worldwide.