Self-Organizing Maps

Self-Organizing Maps PDF Author: Teuvo Kohonen
Publisher: Springer Science & Business Media
ISBN: 3642976107
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
The book we have at hand is the fourth monograph I wrote for Springer Verlag. The previous one named "Self-Organization and Associative Mem ory" (Springer Series in Information Sciences, Volume 8) came out in 1984. Since then the self-organizing neural-network algorithms called SOM and LVQ have become very popular, as can be seen from the many works re viewed in Chap. 9. The new results obtained in the past ten years or so have warranted a new monograph. Over these years I have also answered lots of questions; they have influenced the contents of the present book. I hope it would be of some interest and help to the readers if I now first very briefly describe the various phases that led to my present SOM research, and the reasons underlying each new step. I became interested in neural networks around 1960, but could not in terrupt my graduate studies in physics. After I was appointed Professor of Electronics in 1965, it still took some years to organize teaching at the uni versity. In 1968 - 69 I was on leave at the University of Washington, and D. Gabor had just published his convolution-correlation model of autoasso ciative memory. I noticed immediately that there was something not quite right about it: the capacity was very poor and the inherent noise and crosstalk were intolerable. In 1970 I therefore sugge~ted the auto associative correlation matrix memory model, at the same time as J.A. Anderson and K. Nakano.

Self-Organizing Maps

Self-Organizing Maps PDF Author: Teuvo Kohonen
Publisher: Springer Science & Business Media
ISBN: 3642976107
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
The book we have at hand is the fourth monograph I wrote for Springer Verlag. The previous one named "Self-Organization and Associative Mem ory" (Springer Series in Information Sciences, Volume 8) came out in 1984. Since then the self-organizing neural-network algorithms called SOM and LVQ have become very popular, as can be seen from the many works re viewed in Chap. 9. The new results obtained in the past ten years or so have warranted a new monograph. Over these years I have also answered lots of questions; they have influenced the contents of the present book. I hope it would be of some interest and help to the readers if I now first very briefly describe the various phases that led to my present SOM research, and the reasons underlying each new step. I became interested in neural networks around 1960, but could not in terrupt my graduate studies in physics. After I was appointed Professor of Electronics in 1965, it still took some years to organize teaching at the uni versity. In 1968 - 69 I was on leave at the University of Washington, and D. Gabor had just published his convolution-correlation model of autoasso ciative memory. I noticed immediately that there was something not quite right about it: the capacity was very poor and the inherent noise and crosstalk were intolerable. In 1970 I therefore sugge~ted the auto associative correlation matrix memory model, at the same time as J.A. Anderson and K. Nakano.

Kohonen Maps

Kohonen Maps PDF Author: E. Oja
Publisher: Elsevier
ISBN: 0080535291
Category : Computers
Languages : en
Pages : 401

Get Book Here

Book Description
The Self-Organizing Map, or Kohonen Map, is one of the most widely used neural network algorithms, with thousands of applications covered in the literature. It was one of the strong underlying factors in the popularity of neural networks starting in the early 80's. Currently this method has been included in a large number of commercial and public domain software packages. In this book, top experts on the SOM method take a look at the state of the art and the future of this computing paradigm.The 30 chapters of this book cover the current status of SOM theory, such as connections of SOM to clustering, classification, probabilistic models, and energy functions. Many applications of the SOM are given, with data mining and exploratory data analysis the central topic, applied to large databases of financial data, medical data, free-form text documents, digital images, speech, and process measurements. Biological models related to the SOM are also discussed.

Tutorials in Chemoinformatics

Tutorials in Chemoinformatics PDF Author: Alexandre Varnek
Publisher: John Wiley & Sons
ISBN: 1119137969
Category : Science
Languages : en
Pages : 501

Get Book Here

Book Description
30 tutorials and more than 100 exercises in chemoinformatics, supported by online software and data sets Chemoinformatics is widely used in both academic and industrial chemical and biochemical research worldwide. Yet, until this unique guide, there were no books offering practical exercises in chemoinformatics methods. Tutorials in Chemoinformatics contains more than 100 exercises in 30 tutorials exploring key topics and methods in the field. It takes an applied approach to the subject with a strong emphasis on problem-solving and computational methodologies. Each tutorial is self-contained and contains exercises for students to work through using a variety of software packages. The majority of the tutorials are divided into three sections devoted to theoretical background, algorithm description and software applications, respectively, with the latter section providing step-by-step software instructions. Throughout, three types of software tools are used: in-house programs developed by the authors, open-source programs and commercial programs which are available for free or at a modest cost to academics. The in-house software and data sets are available on a dedicated companion website. Key topics and methods covered in Tutorials in Chemoinformatics include: Data curation and standardization Development and use of chemical databases Structure encoding by molecular descriptors, text strings and binary fingerprints The design of diverse and focused libraries Chemical data analysis and visualization Structure-property/activity modeling (QSAR/QSPR) Ensemble modeling approaches, including bagging, boosting, stacking and random subspaces 3D pharmacophores modeling and pharmacological profiling using shape analysis Protein-ligand docking Implementation of algorithms in a high-level programming language Tutorials in Chemoinformatics is an ideal supplementary text for advanced undergraduate and graduate courses in chemoinformatics, bioinformatics, computational chemistry, computational biology, medicinal chemistry and biochemistry. It is also a valuable working resource for medicinal chemists, academic researchers and industrial chemists looking to enhance their chemoinformatics skills.

Recent Advances in Mechatronics

Recent Advances in Mechatronics PDF Author: Tomas Brezina
Publisher: Springer Science & Business Media
ISBN: 3642050220
Category : Technology & Engineering
Languages : en
Pages : 456

Get Book Here

Book Description
Mechatronics is a synergic discipline integrating precise mechanics, electrotechnics, electronics and IT technologies. The main goal of mechatronical approach to design of complex products is to achieve new quality of their utility value at reasonable price. Successful accomplishment of this task would not be possible without application of advanced software and hardware tools for simulation of design, technologies and production control and also for simulation of behavior of these products in order to provide the highest possible level of spatial and functional integration of the final product. This book brings a review of the current state of the art in mechatronics, as presented at the 8th International Conference Mechatronics 2009, organized by the Brno Technical University, Faculty of Mechanical Engineering, Czech Republic. The specific topics of the conference are Modelling and Simulation, Metrology & Diagnostics, Sensorics & Photonics, Control & Robotics, MEMS Design & Mechatronic Products, Production Machines and Biomechanics. The selected contributions provide an insight into the current development of these scientific disciplines, present the new results of research and development and indicate the trends of development in the interdisciplinary field of mechatronic systems. Therefore, the book provides the latest and helpful information both for the R&D specialists and for the designers working in mechatronics and related fields.

Artificial Neural Networks - ICANN 96

Artificial Neural Networks - ICANN 96 PDF Author: Christoph von der Malsburg
Publisher: Springer Science & Business Media
ISBN: 9783540615101
Category : Computers
Languages : en
Pages : 956

Get Book Here

Book Description
This book constitutes the refereed proceedings of the sixth International Conference on Artificial Neural Networks - ICANN 96, held in Bochum, Germany in July 1996. The 145 papers included were carefully selected from numerous submissions on the basis of at least three reviews; also included are abstracts of the six invited plenary talks. All in all, the set of papers presented reflects the state of the art in the field of ANNs. Among the topics and areas covered are a broad spectrum of theoretical aspects, applications in various fields, sensory processing, cognitive science and AI, implementations, and neurobiology.

Advances in Self-Organizing Maps

Advances in Self-Organizing Maps PDF Author: Jorma Laaksonen
Publisher: Springer Science & Business Media
ISBN: 3642215653
Category : Computers
Languages : en
Pages : 380

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 8th International Workshop on Self-Organizing Maps, WSOM 2011, held in Espoo, Finland, in June 2011. The 36 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on plenaries; financial and societal applications; theory and methodology; applications of data mining and analysis; language processing and document analysis; and visualization and image processing.

Handbook of Natural Computing

Handbook of Natural Computing PDF Author: Grzegorz Rozenberg
Publisher: Springer
ISBN: 9783540929093
Category : Computers
Languages : en
Pages : 2052

Get Book Here

Book Description
Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.

Computational Intelligence Systems in Industrial Engineering

Computational Intelligence Systems in Industrial Engineering PDF Author: Cengiz Kahraman
Publisher: Springer Science & Business Media
ISBN: 9491216775
Category : Technology & Engineering
Languages : en
Pages : 683

Get Book Here

Book Description
Industrial engineering is a branch of engineering dealing with the optimization of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of production and service systems. Computational Intelligence Systems find a wide application area in industrial engineering: neural networks in forecasting, fuzzy sets in capital budgeting, ant colony optimization in scheduling, Simulated Annealing in optimization, etc. This book will include most of the application areas of industrial engineering through these computational intelligence systems. In the literature, there is no book including many real and practical applications of Computational Intelligence Systems from the point of view of Industrial Engineering. Every chapter will include explanatory and didactic applications. It is aimed that the book will be a main source for MSc and PhD students.

Applications of Self-Organizing Maps

Applications of Self-Organizing Maps PDF Author: Magnus Johnsson
Publisher: BoD – Books on Demand
ISBN: 953510862X
Category : Computers
Languages : en
Pages : 302

Get Book Here

Book Description
The self-organizing map, first described by the Finnish scientist Teuvo Kohonen, can by applied to a wide range of fields. This book is about such applications, i.e. how the original self-organizing map as well as variants and extensions of it can be applied in different fields. In fourteen chapters, a wide range of such applications is discussed. To name a few, these applications include the analysis of financial stability, the fault diagnosis of plants, the creation of well-composed heterogeneous teams and the application of the self-organizing map to the atmospheric sciences.

An Introduction to Neural Networks

An Introduction to Neural Networks PDF Author: James A. Anderson
Publisher: MIT Press
ISBN: 9780262510813
Category : Computers
Languages : en
Pages : 680

Get Book Here

Book Description
An Introduction to Neural Networks falls into a new ecological niche for texts. Based on notes that have been class-tested for more than a decade, it is aimed at cognitive science and neuroscience students who need to understand brain function in terms of computational modeling, and at engineers who want to go beyond formal algorithms to applications and computing strategies. It is the only current text to approach networks from a broad neuroscience and cognitive science perspective, with an emphasis on the biology and psychology behind the assumptions of the models, as well as on what the models might be used for. It describes the mathematical and computational tools needed and provides an account of the author's own ideas. Students learn how to teach arithmetic to a neural network and get a short course on linear associative memory and adaptive maps. They are introduced to the author's brain-state-in-a-box (BSB) model and are provided with some of the neurobiological background necessary for a firm grasp of the general subject. The field now known as neural networks has split in recent years into two major groups, mirrored in the texts that are currently available: the engineers who are primarily interested in practical applications of the new adaptive, parallel computing technology, and the cognitive scientists and neuroscientists who are interested in scientific applications. As the gap between these two groups widens, Anderson notes that the academics have tended to drift off into irrelevant, often excessively abstract research while the engineers have lost contact with the source of ideas in the field. Neuroscience, he points out, provides a rich and valuable source of ideas about data representation and setting up the data representation is the major part of neural network programming. Both cognitive science and neuroscience give insights into how this can be done effectively: cognitive science suggests what to compute and neuroscience suggests how to compute it.