Knowledge Discovery with Support Vector Machines

Knowledge Discovery with Support Vector Machines PDF Author: Lutz H. Hamel
Publisher: John Wiley & Sons
ISBN: 1118211030
Category : Computers
Languages : en
Pages : 211

Get Book Here

Book Description
An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover: Knowledge discovery environments Describing data mathematically Linear decision surfaces and functions Perceptron learning Maximum margin classifiers Support vector machines Elements of statistical learning theory Multi-class classification Regression with support vector machines Novelty detection Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas.

Knowledge Discovery with Support Vector Machines

Knowledge Discovery with Support Vector Machines PDF Author: Lutz H. Hamel
Publisher: John Wiley & Sons
ISBN: 1118211030
Category : Computers
Languages : en
Pages : 211

Get Book Here

Book Description
An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover: Knowledge discovery environments Describing data mathematically Linear decision surfaces and functions Perceptron learning Maximum margin classifiers Support vector machines Elements of statistical learning theory Multi-class classification Regression with support vector machines Novelty detection Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas.

Support Vector Machines

Support Vector Machines PDF Author: Naiyang Deng
Publisher: CRC Press
ISBN: 1439857938
Category : Business & Economics
Languages : en
Pages : 345

Get Book Here

Book Description
Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions presents an accessible treatment of the two main components of support vector machines (SVMs)-classification problems and regression problems. The book emphasizes the close connection between optimization theory and SVMs since optimization is one of the pillars on which

Machine Learning for Knowledge Discovery with R

Machine Learning for Knowledge Discovery with R PDF Author: Kao-Tai Tsai
Publisher: CRC Press
ISBN: 100045035X
Category : Business & Economics
Languages : en
Pages : 291

Get Book Here

Book Description
Machine Learning for Knowledge Discovery with R contains methodologies and examples for statistical modelling, inference, and prediction of data analysis. It includes many recent supervised and unsupervised machine learning methodologies such as recursive partitioning modelling, regularized regression, support vector machine, neural network, clustering, and causal-effect inference. Additionally, it emphasizes statistical thinking of data analysis, use of statistical graphs for data structure exploration, and result presentations. The book includes many real-world data examples from life-science, finance, etc. to illustrate the applications of the methods described therein. Key Features: Contains statistical theory for the most recent supervised and unsupervised machine learning methodologies. Emphasizes broad statistical thinking, judgment, graphical methods, and collaboration with subject-matter-experts in analysis, interpretation, and presentations. Written by statistical data analysis practitioner for practitioners. The book is suitable for upper-level-undergraduate or graduate-level data analysis course. It also serves as a useful desk-reference for data analysts in scientific research or industrial applications.

Soft Computing for Knowledge Discovery and Data Mining

Soft Computing for Knowledge Discovery and Data Mining PDF Author: Oded Maimon
Publisher: Springer Science & Business Media
ISBN: 038769935X
Category : Computers
Languages : en
Pages : 431

Get Book Here

Book Description
Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.

Data Analysis, Machine Learning and Knowledge Discovery

Data Analysis, Machine Learning and Knowledge Discovery PDF Author: Myra Spiliopoulou
Publisher: Springer Science & Business Media
ISBN: 3319015958
Category : Computers
Languages : en
Pages : 461

Get Book Here

Book Description
Data analysis, machine learning and knowledge discovery are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medicine, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and knowledge discovery presented during the 36th annual conference of the German Classification Society (GfKl). The conference was held at the University of Hildesheim (Germany) in August 2012. ​

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases PDF Author: Annalisa Appice
Publisher:
ISBN: 9783319235264
Category :
Languages : en
Pages :

Get Book Here

Book Description
The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. The 131 papers presented in these proceedings were carefully reviewed and selected from a total of 483 submissions. These include 89 research papers, 11 industrial papers, 14 nectar papers, 17 demo papers. They were organized in topical sections named: classification, regression and supervised learning; clustering and unsupervised learning; data preprocessing; data streams and online learning; deep learning; distance and metric learning; large scale learning and big data; matrix and tensor analysis; pattern and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.

Support Vector Machines

Support Vector Machines PDF Author: Ingo Steinwart
Publisher: Springer Science & Business Media
ISBN: 0387772421
Category : Computers
Languages : en
Pages : 611

Get Book Here

Book Description
Every mathematical discipline goes through three periods of development: the naive, the formal, and the critical. David Hilbert The goal of this book is to explain the principles that made support vector machines (SVMs) a successful modeling and prediction tool for a variety of applications. We try to achieve this by presenting the basic ideas of SVMs together with the latest developments and current research questions in a uni?ed style. In a nutshell, we identify at least three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and last but not least their computational e?ciency compared with several other methods. Although there are several roots and precursors of SVMs, these methods gained particular momentum during the last 15 years since Vapnik (1995, 1998) published his well-known textbooks on statistical learning theory with aspecialemphasisonsupportvectormachines. Sincethen,the?eldofmachine learninghaswitnessedintenseactivityinthestudyofSVMs,whichhasspread moreandmoretootherdisciplinessuchasstatisticsandmathematics. Thusit seems fair to say that several communities are currently working on support vector machines and on related kernel-based methods. Although there are many interactions between these communities, we think that there is still roomforadditionalfruitfulinteractionandwouldbegladifthistextbookwere found helpful in stimulating further research. Many of the results presented in this book have previously been scattered in the journal literature or are still under review. As a consequence, these results have been accessible only to a relativelysmallnumberofspecialists,sometimesprobablyonlytopeoplefrom one community but not the others.

Content-Addressable Memories

Content-Addressable Memories PDF Author: Teuvo Kohonen
Publisher: Springer Science & Business Media
ISBN: 3642830560
Category : Computers
Languages : en
Pages : 397

Get Book Here

Book Description
Due to continual progress in the large-scale integration of semiconductor circuits, parallel computing principles can already be met in low-cost sys tems: numerous examples exist in image processing, for which special hard ware is implementable with quite modest resources even by nonprofessional designers. Principles of content addressing, if thoroughly understood, can thereby be applied effectively using standard components. On the other hand, mass storage based on associative principles still exists only in the long term plans of computer technologists. This situation is somewhat confused by the fact that certain expectations are held for the development of new storage media such as optical memories and "spin glasses" (metal alloys with low-density magnetic impurities). Their technologies, however, may not ripen until after "fifth generation" computers have been built. It seems that software methods for content addressing, especially those based on hash coding principles, are still holding their position firmly, and a few innovations have been developed recently. As they need no special hardware, one might expect that they will spread to a wide circle of users. This monograph is based on an extensive literature survey, most of which was published in the First Edition. I have added Chap. ?, which contains a review of more recent work. This updated book now has references to over 1200 original publications. In the editing of the new material, I received valuable help from Anneli HeimbUrger, M. Sc. , and Mrs. Leila Koivisto.

Machine Learning and Its Applications

Machine Learning and Its Applications PDF Author: Georgios Paliouras
Publisher: Springer
ISBN: 3540446737
Category : Computers
Languages : en
Pages : 334

Get Book Here

Book Description
In recent years machine learning has made its way from artificial intelligence into areas of administration, commerce, and industry. Data mining is perhaps the most widely known demonstration of this migration, complemented by less publicized applications of machine learning like adaptive systems in industry, financial prediction, medical diagnosis and the construction of user profiles for Web browsers. This book presents the capabilities of machine learning methods and ideas on how these methods could be used to solve real-world problems. The first ten chapters assess the current state of the art of machine learning, from symbolic concept learning and conceptual clustering to case-based reasoning, neural networks, and genetic algorithms. The second part introduces the reader to innovative applications of ML techniques in fields such as data mining, knowledge discovery, human language technology, user modeling, data analysis, discovery science, agent technology, finance, etc.

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases PDF Author: Michelangelo Ceci
Publisher: Springer
ISBN: 3319712462
Category : Computers
Languages : en
Pages : 881

Get Book Here

Book Description
The three volume proceedings LNAI 10534 – 10536 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2017, held in Skopje, Macedonia, in September 2017. The total of 101 regular papers presented in part I and part II was carefully reviewed and selected from 364 submissions; there are 47 papers in the applied data science, nectar and demo track. The contributions were organized in topical sections named as follows: Part I: anomaly detection; computer vision; ensembles and meta learning; feature selection and extraction; kernel methods; learning and optimization, matrix and tensor factorization; networks and graphs; neural networks and deep learning. Part II: pattern and sequence mining; privacy and security; probabilistic models and methods; recommendation; regression; reinforcement learning; subgroup discovery; time series and streams; transfer and multi-task learning; unsupervised and semisupervised learning. Part III: applied data science track; nectar track; and demo track.