Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining PDF Author: Usama M. Fayyad
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 638

Get Book Here

Book Description
Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.

Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining PDF Author: Usama M. Fayyad
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 638

Get Book Here

Book Description
Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.

Data Mining and Knowledge Discovery Handbook

Data Mining and Knowledge Discovery Handbook PDF Author: Oded Maimon
Publisher: Springer Science & Business Media
ISBN: 038725465X
Category : Computers
Languages : en
Pages : 1378

Get Book Here

Book Description
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining PDF Author: O. Maimon
Publisher: Springer Science & Business Media
ISBN: 9780792366478
Category : Computers
Languages : en
Pages : 192

Get Book Here

Book Description
This book presents a specific and unified approach to Knowledge Discovery and Data Mining, termed IFN for Information Fuzzy Network methodology. Data Mining (DM) is the science of modelling and generalizing common patterns from large sets of multi-type data. DM is a part of KDD, which is the overall process for Knowledge Discovery in Databases. The accessibility and abundance of information today makes this a topic of particular importance and need. The book has three main parts complemented by appendices as well as software and project data that are accessible from the book's web site (http://www.eng.tau.ac.iV-maimonlifn-kdg£). Part I (Chapters 1-4) starts with the topic of KDD and DM in general and makes reference to other works in the field, especially those related to the information theoretic approach. The remainder of the book presents our work, starting with the IFN theory and algorithms. Part II (Chapters 5-6) discusses the methodology of application and includes case studies. Then in Part III (Chapters 7-9) a comparative study is presented, concluding with some advanced methods and open problems. The IFN, being a generic methodology, applies to a variety of fields, such as manufacturing, finance, health care, medicine, insurance, and human resources. The appendices expand on the relevant theoretical background and present descriptions of sample projects (including detailed results).

Data Mining Methods for Knowledge Discovery

Data Mining Methods for Knowledge Discovery PDF Author: Krzysztof J. Cios
Publisher: Springer Science & Business Media
ISBN: 1461555892
Category : Computers
Languages : en
Pages : 508

Get Book Here

Book Description
Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.

Data Mining

Data Mining PDF Author: Krzysztof J. Cios
Publisher: Springer Science & Business Media
ISBN: 0387367950
Category : Computers
Languages : en
Pages : 601

Get Book Here

Book Description
This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.

Feature Selection for Knowledge Discovery and Data Mining

Feature Selection for Knowledge Discovery and Data Mining PDF Author: Huan Liu
Publisher: Springer Science & Business Media
ISBN: 1461556899
Category : Computers
Languages : en
Pages : 225

Get Book Here

Book Description
As computer power grows and data collection technologies advance, a plethora of data is generated in almost every field where computers are used. The com puter generated data should be analyzed by computers; without the aid of computing technologies, it is certain that huge amounts of data collected will not ever be examined, let alone be used to our advantages. Even with today's advanced computer technologies (e. g. , machine learning and data mining sys tems), discovering knowledge from data can still be fiendishly hard due to the characteristics of the computer generated data. Taking its simplest form, raw data are represented in feature-values. The size of a dataset can be measUJ·ed in two dimensions, number of features (N) and number of instances (P). Both Nand P can be enormously large. This enormity may cause serious problems to many data mining systems. Feature selection is one of the long existing methods that deal with these problems. Its objective is to select a minimal subset of features according to some reasonable criteria so that the original task can be achieved equally well, if not better. By choosing a minimal subset offeatures, irrelevant and redundant features are removed according to the criterion. When N is reduced, the data space shrinks and in a sense, the data set is now a better representative of the whole data population. If necessary, the reduction of N can also give rise to the reduction of P by eliminating duplicates.

Geographic Data Mining and Knowledge Discovery

Geographic Data Mining and Knowledge Discovery PDF Author: Harvey J. Miller
Publisher: CRC Press
ISBN: 1420073982
Category : Computers
Languages : en
Pages : 488

Get Book Here

Book Description
The Definitive Volume on Cutting-Edge Exploratory Analysis of Massive Spatial and Spatiotemporal DatabasesSince the publication of the first edition of Geographic Data Mining and Knowledge Discovery, new techniques for geographic data warehousing (GDW), spatial data mining, and geovisualization (GVis) have been developed. In addition, there has bee

Knowledge Discovery from Data Streams

Knowledge Discovery from Data Streams PDF Author: Joao Gama
Publisher: CRC Press
ISBN: 1439826129
Category : Business & Economics
Languages : en
Pages : 256

Get Book Here

Book Description
Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents

Data Mining and Knowledge Discovery with Evolutionary Algorithms

Data Mining and Knowledge Discovery with Evolutionary Algorithms PDF Author: Alex A. Freitas
Publisher: Springer Science & Business Media
ISBN: 3662049236
Category : Computers
Languages : en
Pages : 272

Get Book Here

Book Description
This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics

Knowledge Discovery and Data Mining: Challenges and Realities

Knowledge Discovery and Data Mining: Challenges and Realities PDF Author: Zhu, Xingquan
Publisher: IGI Global
ISBN: 1599042541
Category : Computers
Languages : en
Pages : 290

Get Book Here

Book Description
"This book provides a focal point for research and real-world data mining practitioners that advance knowledge discovery from low-quality data; it presents in-depth experiences and methodologies, providing theoretical and empirical guidance to users who have suffered from underlying low-quality data. Contributions also focus on interdisciplinary collaborations among data quality, data processing, data mining, data privacy, and data sharing"--Provided by publisher.