Author: Dominik Wodarz
Publisher: Springer Science & Business Media
ISBN: 0387687335
Category : Mathematics
Languages : en
Pages : 226
Book Description
This book reviews how mathematical and computational approaches can be useful to help us understand how killer T-cell responses work to fight viral infections. It also demonstrates, in a writing style that exemplifies the point, that such mathematical and computational approaches are most valuable when coupled with experimental work through interdisciplinary collaborations. Designed to be useful to immunoligists and viroligists without extensive computational background, the book covers a broad variety of topics, including both basic immunological questions and the application of these insights to the understanding and treatment of pathogenic human diseases.
Killer Cell Dynamics
Author: Dominik Wodarz
Publisher: Springer Science & Business Media
ISBN: 0387687335
Category : Mathematics
Languages : en
Pages : 226
Book Description
This book reviews how mathematical and computational approaches can be useful to help us understand how killer T-cell responses work to fight viral infections. It also demonstrates, in a writing style that exemplifies the point, that such mathematical and computational approaches are most valuable when coupled with experimental work through interdisciplinary collaborations. Designed to be useful to immunoligists and viroligists without extensive computational background, the book covers a broad variety of topics, including both basic immunological questions and the application of these insights to the understanding and treatment of pathogenic human diseases.
Publisher: Springer Science & Business Media
ISBN: 0387687335
Category : Mathematics
Languages : en
Pages : 226
Book Description
This book reviews how mathematical and computational approaches can be useful to help us understand how killer T-cell responses work to fight viral infections. It also demonstrates, in a writing style that exemplifies the point, that such mathematical and computational approaches are most valuable when coupled with experimental work through interdisciplinary collaborations. Designed to be useful to immunoligists and viroligists without extensive computational background, the book covers a broad variety of topics, including both basic immunological questions and the application of these insights to the understanding and treatment of pathogenic human diseases.
Natural Killer Cells
Author: Michael T. Lotze
Publisher: Academic Press
ISBN: 0080919294
Category : Medical
Languages : en
Pages : 709
Book Description
Natural Killer Cells explains the importance of killer cells and how they are produced. It mentions that the most likely explanation for killer cell production is that they serve as a complementary system for T cells as a primary defense against viruses. However, these cells defend against certain viruses only, such as herpes viruses and influenza viruses. The book also explains the primary functions of killer cells, and it discusses how these cells help recognize damaged tissues, limit further damage to tissues, and regenerate damaged tissues. It discusses how these cells mature and develop, and it covers the different isolation, culture, and propagation methods of these cells. Furthermore, it focuses on the different killer cells that are present in various parts of the human body. The book concludes by explaining that natural killer cells are utilized for clinical therapy of malignancies, and that they have led to positive outcomes in the field of biology and medicine. - Provides a broad, detailed coverage of the biology and interactions of NK cells for students, fellows, scientists, and practitioners - Includes figures, histologic sections, and illustrations of the ontogeny of NK cells
Publisher: Academic Press
ISBN: 0080919294
Category : Medical
Languages : en
Pages : 709
Book Description
Natural Killer Cells explains the importance of killer cells and how they are produced. It mentions that the most likely explanation for killer cell production is that they serve as a complementary system for T cells as a primary defense against viruses. However, these cells defend against certain viruses only, such as herpes viruses and influenza viruses. The book also explains the primary functions of killer cells, and it discusses how these cells help recognize damaged tissues, limit further damage to tissues, and regenerate damaged tissues. It discusses how these cells mature and develop, and it covers the different isolation, culture, and propagation methods of these cells. Furthermore, it focuses on the different killer cells that are present in various parts of the human body. The book concludes by explaining that natural killer cells are utilized for clinical therapy of malignancies, and that they have led to positive outcomes in the field of biology and medicine. - Provides a broad, detailed coverage of the biology and interactions of NK cells for students, fellows, scientists, and practitioners - Includes figures, histologic sections, and illustrations of the ontogeny of NK cells
Molecular Biology of the Cell
Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0
Book Description
Concepts of Biology
Author: Samantha Fowler
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1409
Book Description
Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1409
Book Description
Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
Haploidentical Transplantation
Author: Stefan O. Ciurea
Publisher: Springer
ISBN: 3319543105
Category : Medical
Languages : en
Pages : 330
Book Description
In this book, world-renowned experts in the field express well-reasoned opinions on a range of issues and controversies relating to haploidentical transplantation with the aim of providing practicing hematologists with clinically relevant and readily applicable information. Among the areas covered are graft manipulation and methods to control T-cell alloreactivity, the nature of the ideal graft and donor, haploidentical transplantation in pediatric and adult patients with malignant and nonmalignant diseases, immunologic reconstitution following transplantation, complications, and the prevention and treatment of relapse post transplantation. Attention is drawn to the implications of high-impact clinical trials whenever such trials are available. The readily intelligible text is complemented by numerous helpful tables, algorithms, and figures. The book will provide practical support for hematologists and transplant physicians as they attempt to provide optimal care in this exciting but increasingly complex medical specialty.
Publisher: Springer
ISBN: 3319543105
Category : Medical
Languages : en
Pages : 330
Book Description
In this book, world-renowned experts in the field express well-reasoned opinions on a range of issues and controversies relating to haploidentical transplantation with the aim of providing practicing hematologists with clinically relevant and readily applicable information. Among the areas covered are graft manipulation and methods to control T-cell alloreactivity, the nature of the ideal graft and donor, haploidentical transplantation in pediatric and adult patients with malignant and nonmalignant diseases, immunologic reconstitution following transplantation, complications, and the prevention and treatment of relapse post transplantation. Attention is drawn to the implications of high-impact clinical trials whenever such trials are available. The readily intelligible text is complemented by numerous helpful tables, algorithms, and figures. The book will provide practical support for hematologists and transplant physicians as they attempt to provide optimal care in this exciting but increasingly complex medical specialty.
The Immune Synapse
Author: Cosima T. Baldari
Publisher: Humana
ISBN: 9781071631379
Category : Science
Languages : en
Pages : 0
Book Description
This new collection features the most up-to-date essential protocols that are currently being used to study the immune synapse. Beginning with methods for making biophysical measurements, the volume continues by covering the cell biology of synapses, methods for advanced substrate engineering, mechanobiology topics, new technologies to describe and manipulate synaptic components, as well as methods related to sites of action and immunotherapy. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and fully updated, The Immune Synapse: Methods and Protocols, Second Edition serves as an ideal practical guide for researchers working in this dynamic field. Chapters 5, 11,18, 27, 30, and 32 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Publisher: Humana
ISBN: 9781071631379
Category : Science
Languages : en
Pages : 0
Book Description
This new collection features the most up-to-date essential protocols that are currently being used to study the immune synapse. Beginning with methods for making biophysical measurements, the volume continues by covering the cell biology of synapses, methods for advanced substrate engineering, mechanobiology topics, new technologies to describe and manipulate synaptic components, as well as methods related to sites of action and immunotherapy. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and fully updated, The Immune Synapse: Methods and Protocols, Second Edition serves as an ideal practical guide for researchers working in this dynamic field. Chapters 5, 11,18, 27, 30, and 32 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Virus Dynamics : Mathematical Principles of Immunology and Virology
Author: Martin Nowak
Publisher: Oxford University Press, UK
ISBN: 0191588512
Category :
Languages : en
Pages : 253
Book Description
This groundbreaking book describes the emerging field of theoretical immunology, in particular the use of mathematical models to describe the spread of infectious diseases within patients. It reveals fascinating insights into the dynamics of viral and other infections, and the interactions between infectious agents and immune responses. Structured around the examples of HIV/AIDS and hepatitis B, Nowak and May show how mathematical models can help researchers to understand the detailed dynamics of infection and the effects of antiviral therapy. Models are developed to describe the dynamics of drug resistance, immune responses, viral evolution and mutation, and to optimise the design of therapy and vaccines. - ;We know, down to the tiniest details, the molecular structure of the human immunodeficiency virus (HIV). Yet despite this tremendous accomplishment, and despite other remarkable advances in our understanding of individual viruses and cells of the immune system, we still have no agreed understanding of the ultimate course and variability of the pathogenesis of AIDS. Gaps in our understanding like these impede our efforts towards developing effective therapies and preventive vaccines. Martin Nowak and Robert M May describe the emerging field of theoretical immunology in this accessible and well- written text. Using mathematical modelling techniques, the authors set out their ideas about how populations of viruses and populations of immune system cells may interact in various circumstances, and how infectious diseases spread within patients. They explain how this approach to understanding infectious diseases can reveal insights into the dynamics of viral and other infections, and the interactions between infectious agents and immune responses. The book is structured around the examples of HIV/AIDS and Hepatitis B virus, although the approaches described will be more widely applicable. The authors use mathematical tools to uncover the detailed dynamics of the infection and the effects of antiviral therapy. Models are developed to describe the emergence of drug resistance, and the dynamics of immune responses, viral evolution, and mutation. The practical implications of this work for optimisation of the design of therapy and vaccines are discussed. The book concludes with a glance towards the future of this fascinating, and potentially highly useful, field of study. - ;... an excellent introduction to a field that has the potential to advance substantially our understanding of the complex interplay between virus and host - Nature
Publisher: Oxford University Press, UK
ISBN: 0191588512
Category :
Languages : en
Pages : 253
Book Description
This groundbreaking book describes the emerging field of theoretical immunology, in particular the use of mathematical models to describe the spread of infectious diseases within patients. It reveals fascinating insights into the dynamics of viral and other infections, and the interactions between infectious agents and immune responses. Structured around the examples of HIV/AIDS and hepatitis B, Nowak and May show how mathematical models can help researchers to understand the detailed dynamics of infection and the effects of antiviral therapy. Models are developed to describe the dynamics of drug resistance, immune responses, viral evolution and mutation, and to optimise the design of therapy and vaccines. - ;We know, down to the tiniest details, the molecular structure of the human immunodeficiency virus (HIV). Yet despite this tremendous accomplishment, and despite other remarkable advances in our understanding of individual viruses and cells of the immune system, we still have no agreed understanding of the ultimate course and variability of the pathogenesis of AIDS. Gaps in our understanding like these impede our efforts towards developing effective therapies and preventive vaccines. Martin Nowak and Robert M May describe the emerging field of theoretical immunology in this accessible and well- written text. Using mathematical modelling techniques, the authors set out their ideas about how populations of viruses and populations of immune system cells may interact in various circumstances, and how infectious diseases spread within patients. They explain how this approach to understanding infectious diseases can reveal insights into the dynamics of viral and other infections, and the interactions between infectious agents and immune responses. The book is structured around the examples of HIV/AIDS and Hepatitis B virus, although the approaches described will be more widely applicable. The authors use mathematical tools to uncover the detailed dynamics of the infection and the effects of antiviral therapy. Models are developed to describe the emergence of drug resistance, and the dynamics of immune responses, viral evolution, and mutation. The practical implications of this work for optimisation of the design of therapy and vaccines are discussed. The book concludes with a glance towards the future of this fascinating, and potentially highly useful, field of study. - ;... an excellent introduction to a field that has the potential to advance substantially our understanding of the complex interplay between virus and host - Nature
Natural Killer Cell Protocols
Author: Kerry S. Campbell
Publisher: Springer Science & Business Media
ISBN: 1592590446
Category : Medical
Languages : en
Pages : 394
Book Description
In Natural Killer Cell Protocols: Cellular and Molecular Methods, Kerry S. Campbell and Marco Colonna have assembled a comprehensive collection of readily reproducible methods designed to study natural killer (NK) cells from the broadest variety of viewpoints. These include not only classic techniques, but also new approaches to standard methods, newly evolved techniques that have become valuable for specific applications, and unique models for manipulating and studying NK cells. Among the advanced methods covered are those for in vitro transendothelial migration, in vivo detection of cells migrating into tumors, immunofluorescence staining of intracellular cytokines, and in vitro NK cell development. Valuable techniques for specific applications include vaccinia virus protein expression, soluble KIR-Fc fusions for HLA class I binding assays, calcium mobilization in cell conjugates, and identification of heterodimeric receptor complexes using cDNA library expression cloning. No less important are accounts of such classic methods as hybrid resistance, ADCC, viral defense, target cell cytotoxicity assays, cloning and culturing, tumor immunotherapy, and generation of HLA class I transfected target cells. Natural Killer Cell Protocols: Cellular and Molecular Methods offers immunologists, cancer researchers, virologists, and cell biologists today's most comprehensive collection of both established and cutting-edge techniques, methods that will contribute significantly to advancing our understanding of this fascinating and critically important class of cells.
Publisher: Springer Science & Business Media
ISBN: 1592590446
Category : Medical
Languages : en
Pages : 394
Book Description
In Natural Killer Cell Protocols: Cellular and Molecular Methods, Kerry S. Campbell and Marco Colonna have assembled a comprehensive collection of readily reproducible methods designed to study natural killer (NK) cells from the broadest variety of viewpoints. These include not only classic techniques, but also new approaches to standard methods, newly evolved techniques that have become valuable for specific applications, and unique models for manipulating and studying NK cells. Among the advanced methods covered are those for in vitro transendothelial migration, in vivo detection of cells migrating into tumors, immunofluorescence staining of intracellular cytokines, and in vitro NK cell development. Valuable techniques for specific applications include vaccinia virus protein expression, soluble KIR-Fc fusions for HLA class I binding assays, calcium mobilization in cell conjugates, and identification of heterodimeric receptor complexes using cDNA library expression cloning. No less important are accounts of such classic methods as hybrid resistance, ADCC, viral defense, target cell cytotoxicity assays, cloning and culturing, tumor immunotherapy, and generation of HLA class I transfected target cells. Natural Killer Cell Protocols: Cellular and Molecular Methods offers immunologists, cancer researchers, virologists, and cell biologists today's most comprehensive collection of both established and cutting-edge techniques, methods that will contribute significantly to advancing our understanding of this fascinating and critically important class of cells.
Dynamics Of Cancer: Mathematical Foundations Of Oncology
Author: Dominik Wodarz
Publisher: World Scientific
ISBN: 9814566381
Category : Mathematics
Languages : en
Pages : 533
Book Description
The book aims to provide an introduction to mathematical models that describe the dynamics of tumor growth and the evolution of tumor cells. It can be used as a textbook for advanced undergraduate or graduate courses, and also serves as a reference book for researchers. The book has a strong evolutionary component and reflects the viewpoint that cancer can be understood rationally through a combination of mathematical and biological tools. It can be used both by mathematicians and biologists. Mathematically, the book starts with relatively simple ordinary differential equation models, and subsequently explores more complex stochastic and spatial models. Biologically, the book starts with explorations of the basic dynamics of tumor growth, including competitive interactions among cells, and subsequently moves on to the evolutionary dynamics of cancer cells, including scenarios of cancer initiation, progression, and treatment. The book finishes with a discussion of advanced topics, which describe how some of the mathematical concepts can be used to gain insights into a variety of questions, such as epigenetics, telomeres, gene therapy, and social interactions of cancer cells.
Publisher: World Scientific
ISBN: 9814566381
Category : Mathematics
Languages : en
Pages : 533
Book Description
The book aims to provide an introduction to mathematical models that describe the dynamics of tumor growth and the evolution of tumor cells. It can be used as a textbook for advanced undergraduate or graduate courses, and also serves as a reference book for researchers. The book has a strong evolutionary component and reflects the viewpoint that cancer can be understood rationally through a combination of mathematical and biological tools. It can be used both by mathematicians and biologists. Mathematically, the book starts with relatively simple ordinary differential equation models, and subsequently explores more complex stochastic and spatial models. Biologically, the book starts with explorations of the basic dynamics of tumor growth, including competitive interactions among cells, and subsequently moves on to the evolutionary dynamics of cancer cells, including scenarios of cancer initiation, progression, and treatment. The book finishes with a discussion of advanced topics, which describe how some of the mathematical concepts can be used to gain insights into a variety of questions, such as epigenetics, telomeres, gene therapy, and social interactions of cancer cells.
Selected Topics in Cancer Modeling
Author: Nicola Bellomo
Publisher: Springer Science & Business Media
ISBN: 0817647139
Category : Mathematics
Languages : en
Pages : 481
Book Description
This collection of selected chapters offers a comprehensive overview of state-of-the-art mathematical methods and tools for modeling and analyzing cancer phenomena. Topics covered include stochastic evolutionary models of cancer initiation and progression, tumor cords and their response to anticancer agents, and immune competition in tumor progression and prevention. The complexity of modeling living matter requires the development of new mathematical methods and ideas. This volume, written by first-rate researchers in the field of mathematical biology, is one of the first steps in that direction.
Publisher: Springer Science & Business Media
ISBN: 0817647139
Category : Mathematics
Languages : en
Pages : 481
Book Description
This collection of selected chapters offers a comprehensive overview of state-of-the-art mathematical methods and tools for modeling and analyzing cancer phenomena. Topics covered include stochastic evolutionary models of cancer initiation and progression, tumor cords and their response to anticancer agents, and immune competition in tumor progression and prevention. The complexity of modeling living matter requires the development of new mathematical methods and ideas. This volume, written by first-rate researchers in the field of mathematical biology, is one of the first steps in that direction.