Author: Bill Jacob
Publisher: American Mathematical Soc.
ISBN: 0821803409
Category : Mathematics
Languages : en
Pages : 458
Book Description
Volume 2 of two - also available in a set of both volumes.
$K$-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras
Author: Bill Jacob
Publisher: American Mathematical Soc.
ISBN: 0821803409
Category : Mathematics
Languages : en
Pages : 458
Book Description
Volume 2 of two - also available in a set of both volumes.
Publisher: American Mathematical Soc.
ISBN: 0821803409
Category : Mathematics
Languages : en
Pages : 458
Book Description
Volume 2 of two - also available in a set of both volumes.
K-theory and Algebraic Geometry
Author: Bill Jacob
Publisher: American Mathematical Soc.
ISBN: 9780821814987
Category : Mathematics
Languages : en
Pages : 737
Book Description
During the 1980s, profound connections were discovered relating modern algebraic geometry and algebraic $K$-theory to arithmetic problems. The term ``arithmetic algebraic geometry'' was coined during that period and is now used to denote an entire branch of modern number theory. These same developments in algebraic geometry and $K$-theory greatly influenced research on the arithmetic of fields in general, and the algebraic theory of quadratic forms and the theory of finite-dimensional division algebras in particular. This book contains papers presented at an AMS Summer Research Institute held in July 1992 at the University of California, Santa Barbara. The purpose of the conference was to provide a broad overview of the tools from algebraic geometry and $K$-theory that have proved to be the most powerful in solving problems in the theory of quadratic forms and division algebras. In addition, the conference provided a venue for exposition of recent research. A substantial portion of the lectures of the major conference speakers--Colliot-Thelene, Merkurjev, Raskind, Saltman, Suslin, Swan--are reproduced in the expository articles in this book.
Publisher: American Mathematical Soc.
ISBN: 9780821814987
Category : Mathematics
Languages : en
Pages : 737
Book Description
During the 1980s, profound connections were discovered relating modern algebraic geometry and algebraic $K$-theory to arithmetic problems. The term ``arithmetic algebraic geometry'' was coined during that period and is now used to denote an entire branch of modern number theory. These same developments in algebraic geometry and $K$-theory greatly influenced research on the arithmetic of fields in general, and the algebraic theory of quadratic forms and the theory of finite-dimensional division algebras in particular. This book contains papers presented at an AMS Summer Research Institute held in July 1992 at the University of California, Santa Barbara. The purpose of the conference was to provide a broad overview of the tools from algebraic geometry and $K$-theory that have proved to be the most powerful in solving problems in the theory of quadratic forms and division algebras. In addition, the conference provided a venue for exposition of recent research. A substantial portion of the lectures of the major conference speakers--Colliot-Thelene, Merkurjev, Raskind, Saltman, Suslin, Swan--are reproduced in the expository articles in this book.
K-theory and Algebraic Geometry
Author:
Publisher:
ISBN:
Category : Geometry, Algebraic
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Geometry, Algebraic
Languages : en
Pages :
Book Description
Quadratic Forms, Linear Algebraic Groups, and Cohomology
Author: Skip Garibaldi
Publisher: Springer Science & Business Media
ISBN: 1441962115
Category : Mathematics
Languages : en
Pages : 344
Book Description
Developments in Mathematics is a book series devoted to all areas of mathematics, pure and applied. The series emphasizes research monographs describing the latest advances. Edited volumes that focus on areas that have seen dramatic progress, or are of special interest, are encouraged as well.
Publisher: Springer Science & Business Media
ISBN: 1441962115
Category : Mathematics
Languages : en
Pages : 344
Book Description
Developments in Mathematics is a book series devoted to all areas of mathematics, pure and applied. The series emphasizes research monographs describing the latest advances. Edited volumes that focus on areas that have seen dramatic progress, or are of special interest, are encouraged as well.
Geometric Methods in the Algebraic Theory of Quadratic Forms
Author: Oleg T. Izhboldin
Publisher: Springer
ISBN: 3540409904
Category : Mathematics
Languages : en
Pages : 198
Book Description
The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the 1960's. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes an introduction to motives of quadrics by A. Vishik, with various applications, notably to the splitting patterns of quadratic forms, papers by O. Izhboldin and N. Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields with u-invariant 9, and a contribution in French by B. Kahn which lays out a general framework for the computation of the unramified cohomology groups of quadrics and other cellular varieties.
Publisher: Springer
ISBN: 3540409904
Category : Mathematics
Languages : en
Pages : 198
Book Description
The geometric approach to the algebraic theory of quadratic forms is the study of projective quadrics over arbitrary fields. Function fields of quadrics have been central to the proofs of fundamental results since the 1960's. Recently, more refined geometric tools have been brought to bear on this topic, such as Chow groups and motives, and have produced remarkable advances on a number of outstanding problems. Several aspects of these new methods are addressed in this volume, which includes an introduction to motives of quadrics by A. Vishik, with various applications, notably to the splitting patterns of quadratic forms, papers by O. Izhboldin and N. Karpenko on Chow groups of quadrics and their stable birational equivalence, with application to the construction of fields with u-invariant 9, and a contribution in French by B. Kahn which lays out a general framework for the computation of the unramified cohomology groups of quadrics and other cellular varieties.
Algebraic K-theory
Author: Victor Percy Snaith
Publisher: American Mathematical Soc.
ISBN: 9780821871232
Category : Mathematics
Languages : en
Pages : 380
Book Description
The conference proceedings volume is produced in connection with the second Great Lakes K-theory Conference that was held at The Fields Institute for Research in Mathematical Sciences in March 1996. The volume is dedicated to the late Bob Thomason, one of the leading research mathematicians specializing in algebraic K-theory. In addition to research papers treated directly in the lectures at the conference, this volume contains the following: i) several timely articles inspired by those lectures (particularly by that of V. Voevodsky), ii) an extensive exposition by Steve Mitchell of Thomason's famous result concerning the relationship between algebraic K-theory and etale cohomology, iii) a definitive exposition by J-L. Colliot-Thelene, R. Hoobler, and B. Kahn (explaining and elaborating upon unpublished work of O. Gabber) of Bloch-Ogus-Gersten type resolutions in K-theory and algebraic geometry. This volume will be important both for researchers who want access to details of recent development in K-theory and also to graduate students and researchers seeking good advanced exposition.
Publisher: American Mathematical Soc.
ISBN: 9780821871232
Category : Mathematics
Languages : en
Pages : 380
Book Description
The conference proceedings volume is produced in connection with the second Great Lakes K-theory Conference that was held at The Fields Institute for Research in Mathematical Sciences in March 1996. The volume is dedicated to the late Bob Thomason, one of the leading research mathematicians specializing in algebraic K-theory. In addition to research papers treated directly in the lectures at the conference, this volume contains the following: i) several timely articles inspired by those lectures (particularly by that of V. Voevodsky), ii) an extensive exposition by Steve Mitchell of Thomason's famous result concerning the relationship between algebraic K-theory and etale cohomology, iii) a definitive exposition by J-L. Colliot-Thelene, R. Hoobler, and B. Kahn (explaining and elaborating upon unpublished work of O. Gabber) of Bloch-Ogus-Gersten type resolutions in K-theory and algebraic geometry. This volume will be important both for researchers who want access to details of recent development in K-theory and also to graduate students and researchers seeking good advanced exposition.
Bilinear Algebra
Author: Kazimierz Szymiczek
Publisher: Routledge
ISBN: 1351464213
Category : Mathematics
Languages : en
Pages : 501
Book Description
Giving an easily accessible elementary introduction to the algebraic theory of quadratic forms, this book covers both Witt's theory and Pfister's theory of quadratic forms. Leading topics include the geometry of bilinear spaces, classification of bilinear spaces up to isometry depending on the ground field, formally real fields, Pfister forms, the Witt ring of an arbitrary field (characteristic two included), prime ideals of the Witt ring, Brauer group of a field, Hasse and Witt invariants of quadratic forms, and equivalence of fields with respect to quadratic forms. Problem sections are included at the end of each chapter. There are two appendices: the first gives a treatment of Hasse and Witt invariants in the language of Steinberg symbols, and the second contains some more advanced problems in 10 groups, including the u-invariant, reduced and stable Witt rings, and Witt equivalence of fields.
Publisher: Routledge
ISBN: 1351464213
Category : Mathematics
Languages : en
Pages : 501
Book Description
Giving an easily accessible elementary introduction to the algebraic theory of quadratic forms, this book covers both Witt's theory and Pfister's theory of quadratic forms. Leading topics include the geometry of bilinear spaces, classification of bilinear spaces up to isometry depending on the ground field, formally real fields, Pfister forms, the Witt ring of an arbitrary field (characteristic two included), prime ideals of the Witt ring, Brauer group of a field, Hasse and Witt invariants of quadratic forms, and equivalence of fields with respect to quadratic forms. Problem sections are included at the end of each chapter. There are two appendices: the first gives a treatment of Hasse and Witt invariants in the language of Steinberg symbols, and the second contains some more advanced problems in 10 groups, including the u-invariant, reduced and stable Witt rings, and Witt equivalence of fields.
Quadratic Forms and Their Applications
Author: Eva Bayer-Fluckiger
Publisher: American Mathematical Soc.
ISBN: 0821827790
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.
Publisher: American Mathematical Soc.
ISBN: 0821827790
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume outlines the proceedings of the conference on "Quadratic Forms and Their Applications" held at University College Dublin. It includes survey articles and research papers ranging from applications in topology and geometry to the algebraic theory of quadratic forms and its history. Various aspects of the use of quadratic forms in algebra, analysis, topology, geometry, and number theory are addressed. Special features include the first published proof of the Conway-Schneeberger Fifteen Theorem on integer-valued quadratic forms and the first English-language biography of Ernst Witt, founder of the theory of quadratic forms.
Algebraic $K$-Theory
Author: Wayne Raskind
Publisher: American Mathematical Soc.
ISBN: 082180927X
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume presents the proceedings of the Joint Summer Research Conference on Algebraic K-theory held at the University of Washington in Seattle. High-quality surveys are written by leading experts in the field. Included is an up-to-date account of Voevodsky's proof of the Milnor conjecture relating the Milnor K-theory of fields to Galois cohomology. The book is intended for graduate students and research mathematicians interested in $K$-theory, algebraic geometry, and number theory.
Publisher: American Mathematical Soc.
ISBN: 082180927X
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume presents the proceedings of the Joint Summer Research Conference on Algebraic K-theory held at the University of Washington in Seattle. High-quality surveys are written by leading experts in the field. Included is an up-to-date account of Voevodsky's proof of the Milnor conjecture relating the Milnor K-theory of fields to Galois cohomology. The book is intended for graduate students and research mathematicians interested in $K$-theory, algebraic geometry, and number theory.
Handbook of Algebra
Author: M. Hazewinkel
Publisher: Elsevier
ISBN: 0080932819
Category : Mathematics
Languages : en
Pages : 637
Book Description
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes
Publisher: Elsevier
ISBN: 0080932819
Category : Mathematics
Languages : en
Pages : 637
Book Description
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes