K-[alpha] X-ray Thomson Scattering From Dense Plasmas

K-[alpha] X-ray Thomson Scattering From Dense Plasmas PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
Spectrally resolved Thomson scattering using ultra-fast K-[alpha] x-rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7 x 1023cm−3, were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation.

K-[alpha] X-ray Thomson Scattering From Dense Plasmas

K-[alpha] X-ray Thomson Scattering From Dense Plasmas PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description
Spectrally resolved Thomson scattering using ultra-fast K-[alpha] x-rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7 x 1023cm−3, were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation.

Demonstration of Successful X-ray Thomson Scattering Using Picosecond K-[alpha] X-ray Sources for the Characterization of Dense Heated Matter

Demonstration of Successful X-ray Thomson Scattering Using Picosecond K-[alpha] X-ray Sources for the Characterization of Dense Heated Matter PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
We discuss the first successful K-[alpha] x-ray Thomson scattering experiment from solid density plasmas for use as a diagnostic in determining the temperature, density, and ionization state of warm dense matter with picosecond resolution. The development of this source as a diagnostic and stringent requirements for successful K-[alpha] x-ray Thomson scattering are addressed. Data for the experimental techniques described in this paper [1] suggest the capability of single shot characterization of warm dense matter and the ability to use this scattering source at future Free Electron Lasers (FEL) where comparable scattering signal levels are predicted.

X-ray Thomson Scattering from Dense Plasmas

X-ray Thomson Scattering from Dense Plasmas PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description


New Regime of Thomson Scattering: Probing Dense Plasmas with X-Ray Lasers

New Regime of Thomson Scattering: Probing Dense Plasmas with X-Ray Lasers PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
In this paper the authors demonstrate through calculations and theoretical analysis the first application of a x-ray laser for probing hot, high-density plasmas (n[sub e][ge] 10[sup 23] cm[sup -3]) using a Ni-like transient collisional excitation x-ray laser as a probe. Theoretical predictions are used to diagnose the electron temperature in short pulse (500 fs) laser produced plasmas. The threshold power of the x-ray probe is estimated by comparing theoretical scattering levels with plasma thermal emission. The necessary spectral resolution of the instrument sufficient for resolving electron temperature is given.

Ultrafast K-[alpha] X-ray Thomson Scattering from Shock Compressed Lithium Hydride

Ultrafast K-[alpha] X-ray Thomson Scattering from Shock Compressed Lithium Hydride PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
Spectrally and temporally resolved x ray Thomson scattering using ultrafast Ti K-[alpha] x-rays has provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 nanosecond heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models. Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transition to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of three times solid density. The quality of data achieved in these experiments demonstrates the capability for single-shot dynamic characterization of dense shock compressed matter. The conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets for experiments such as on the National Ignition Facility (NIF), LLNL.

Using Collective X-ray Thomson Scattering to Measure Temperature and Density of Warm Dense Matter

Using Collective X-ray Thomson Scattering to Measure Temperature and Density of Warm Dense Matter PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Get Book Here

Book Description
Collective x-ray Thomson scattering allows measuring plasmons, i.e electron plasma oscillations (Langmuir waves). This is manifest in the appearance of spectrally up- and down-shifted spectral features in addition to the Rayleigh signal. The ratio of the up- and down-shifted signals is directly related to detailed balance, allowing to determine the plasma temperature from first principles. The spectral shift of the plasmon signals is sensitive to temperature and electron density. We discuss the experimental considerations that have to be fulfilled to observe plasmon signals with x-ray Thomson scattering. As an example, we describe an experiment that used the Cl Ly-[alpha] x-ray line at 2.96 keV to measure collective Thomson scattering from solid beryllium, isochorically heated to 18 eV. Since temperature measurement based on detailed balance is based on first principles, this method is important to validate models that, for example, calculate the static ion-ion structure factor S{sub ii}(k).

Theoretical Model and Interpretation of Dense Plasma X-Ray Thomson Scattering

Theoretical Model and Interpretation of Dense Plasma X-Ray Thomson Scattering PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The authors present analytical expressions for the dynamic structure factor, or form factor S(k, [omega]), which is the quantity describing the inelastic x-ray cross section from a dense plasma or a simple liquid. The results, based on the random phase approximation (RPA) for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. The form factor correctly reproduces the Compton energy downshift and the usual Fermi-Dirac electron velocity distribution for S(k, [omega]) in the case of a cold degenerate plasma. the usual concept of scattering parameter is also reinterpreted for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments or inside the interior of planets.

X-ray Radiography and Scattering Diagnosis of Dense Shock-Compressed Matter

X-ray Radiography and Scattering Diagnosis of Dense Shock-Compressed Matter PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description
Highly coupled Boron plasma has been probed by spectrally resolving an x-ray source scattered by the plasma. Electron density was inferred from the inelastic feature in the collective scattering regime. In addition, the mass density inferred from the non-collective X-ray Thomson scattering has been tested with independent characterization using X-ray radiography in the same drive condition. High-intensity laser produced K-alpha radiation was used as a backlighter for these dynamically compressed plasma experiments providing a high temporal resolution of the measurements. Mass density measurements from both methods are in good agreement. The measurements yield a compression of 1.3 in agreement with detailed radiation-hydrodynamic modeling. From the charge state measured in the non-collective regime and the electron density measured in the collective regime the mass density can then be constrained to 3.15 ± 0.16.

Plasma Scattering of Electromagnetic Radiation

Plasma Scattering of Electromagnetic Radiation PDF Author: John Sheffield
Publisher: Academic Press
ISBN: 0080952038
Category : Science
Languages : en
Pages : 512

Get Book Here

Book Description
This work presents one of the most powerful methods of plasma diagnosis in exquisite detail, to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers, the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of their principles with worked examples to assist researchers in applying the theory. - Computing techniques for solving basic equations helps researchers compare data to the actual experiment - New material on advances on the experimental side, such as the application of high density plasmas of inertial fusion - Worked out examples of the scattering technique for easier comprehension of theory

Statistical Physics of Dense Plasmas

Statistical Physics of Dense Plasmas PDF Author: Setsuo Ichimaru
Publisher: CRC Press
ISBN: 042977530X
Category : Science
Languages : en
Pages : 181

Get Book Here

Book Description
This authoritative text offers a complete overview on the statistical mechanics and electrodynamics of physical processes in dense plasma systems. The author emphasizes laboratory-based experiments and astrophysical observations of plasma phenomena, elucidated through the fundamentals. The coverage encompasses relevant condensed matter physics, atomic physics, nuclear physics, and astrophysics, including such key topics as phase transitions, transport, optical and nuclear processes. This essential resource also addresses exciting, cutting edge topics in the field, including metallic hydrogen, stellar and planetary magnetisms, pycnonuclear reactions, and gravitational waves. Scientists, researchers, and students in plasma physics, condensed matter physics, materials science, atomic physics, nuclear physics, and astrophysics will benefit from this work. Setsuo Ichimaru is a distinguished professor at the University of Tokyo, and has been a visiting member at The Institute for Advanced Study in Princeton, New Jersey, at the University of California, San Diego (UCSD), the Institute for Theoretical Physics at Johannes Kepler University, and the Max Planck Institute for Quantum Optics. He is a recipient of the Subramanyan Chandrasekhar Prize of Plasma Physics from the Association of Asia-Pacific Physical Societies and the Humboldt Research Award from the Alexander von Humboldt Foundation.