Author: Pierre Duhamel
Publisher: Academic Press
ISBN: 0080922449
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
- Treats joint source and channel decoding in an integrated way - Gives a clear description of the problems in the field together with the mathematical tools for their solution - Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks Traditionally, cross-layer and joint source-channel coding were seen as incompatible with classically structured networks but recent advances in theory changed this situation. Joint source-channel decoding is now seen as a viable alternative to separate decoding of source and channel codes, if the protocol layers are taken into account. A joint source/protocol/channel approach is thus addressed in this book: all levels of the protocol stack are considered, showing how the information in each layer influences the others. This book provides the tools to show how cross-layer and joint source-channel coding and decoding are now compatible with present-day mobile and wireless networks, with a particular application to the key area of video transmission to mobiles. Typical applications are broadcasting, or point-to-point delivery of multimedia contents, which are very timely in the context of the current development of mobile services such as audio (MPEG4 AAC) or video (H263, H264) transmission using recent wireless transmission standards (DVH-H, DVB-SH, WiMAX, LTE). This cross-disciplinary book is ideal for graduate students, researchers, and more generally professionals working either in signal processing for communications or in networking applications, interested in reliable multimedia transmission. This book is also of interest to people involved in cross-layer optimization of mobile networks. Its content may provide them with other points of view on their optimization problem, enlarging the set of tools which they could use. Pierre Duhamel is director of research at CNRS/ LSS and has previously held research positions at Thomson-CSF, CNET, and ENST, where he was head of the Signal and Image Processing Department. He has served as chairman of the DSP committee and associate Editor of the IEEE Transactions on Signal Processing and Signal Processing Letters, as well as acting as a co-chair at MMSP and ICASSP conferences. He was awarded the Grand Prix France Telecom by the French Science Academy in 2000. He is co-author of more than 80 papers in international journals, 250 conference proceedings, and 28 patents. Michel Kieffer is an assistant professor in signal processing for communications at the Université Paris-Sud and a researcher at the Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France. His research interests are in joint source-channel coding and decoding techniques for the reliable transmission of multimedia contents. He serves as associate editor of Signal Processing (Elsevier). He is co-author of more than 90 contributions to journals, conference proceedings, and book chapters. - Treats joint source and channel decoding in an integrated way - Gives a clear description of the problems in the field together with the mathematical tools for their solution - Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks
Joint Source-Channel Decoding
Author: Pierre Duhamel
Publisher: Academic Press
ISBN: 0080922449
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
- Treats joint source and channel decoding in an integrated way - Gives a clear description of the problems in the field together with the mathematical tools for their solution - Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks Traditionally, cross-layer and joint source-channel coding were seen as incompatible with classically structured networks but recent advances in theory changed this situation. Joint source-channel decoding is now seen as a viable alternative to separate decoding of source and channel codes, if the protocol layers are taken into account. A joint source/protocol/channel approach is thus addressed in this book: all levels of the protocol stack are considered, showing how the information in each layer influences the others. This book provides the tools to show how cross-layer and joint source-channel coding and decoding are now compatible with present-day mobile and wireless networks, with a particular application to the key area of video transmission to mobiles. Typical applications are broadcasting, or point-to-point delivery of multimedia contents, which are very timely in the context of the current development of mobile services such as audio (MPEG4 AAC) or video (H263, H264) transmission using recent wireless transmission standards (DVH-H, DVB-SH, WiMAX, LTE). This cross-disciplinary book is ideal for graduate students, researchers, and more generally professionals working either in signal processing for communications or in networking applications, interested in reliable multimedia transmission. This book is also of interest to people involved in cross-layer optimization of mobile networks. Its content may provide them with other points of view on their optimization problem, enlarging the set of tools which they could use. Pierre Duhamel is director of research at CNRS/ LSS and has previously held research positions at Thomson-CSF, CNET, and ENST, where he was head of the Signal and Image Processing Department. He has served as chairman of the DSP committee and associate Editor of the IEEE Transactions on Signal Processing and Signal Processing Letters, as well as acting as a co-chair at MMSP and ICASSP conferences. He was awarded the Grand Prix France Telecom by the French Science Academy in 2000. He is co-author of more than 80 papers in international journals, 250 conference proceedings, and 28 patents. Michel Kieffer is an assistant professor in signal processing for communications at the Université Paris-Sud and a researcher at the Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France. His research interests are in joint source-channel coding and decoding techniques for the reliable transmission of multimedia contents. He serves as associate editor of Signal Processing (Elsevier). He is co-author of more than 90 contributions to journals, conference proceedings, and book chapters. - Treats joint source and channel decoding in an integrated way - Gives a clear description of the problems in the field together with the mathematical tools for their solution - Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks
Publisher: Academic Press
ISBN: 0080922449
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
- Treats joint source and channel decoding in an integrated way - Gives a clear description of the problems in the field together with the mathematical tools for their solution - Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks Traditionally, cross-layer and joint source-channel coding were seen as incompatible with classically structured networks but recent advances in theory changed this situation. Joint source-channel decoding is now seen as a viable alternative to separate decoding of source and channel codes, if the protocol layers are taken into account. A joint source/protocol/channel approach is thus addressed in this book: all levels of the protocol stack are considered, showing how the information in each layer influences the others. This book provides the tools to show how cross-layer and joint source-channel coding and decoding are now compatible with present-day mobile and wireless networks, with a particular application to the key area of video transmission to mobiles. Typical applications are broadcasting, or point-to-point delivery of multimedia contents, which are very timely in the context of the current development of mobile services such as audio (MPEG4 AAC) or video (H263, H264) transmission using recent wireless transmission standards (DVH-H, DVB-SH, WiMAX, LTE). This cross-disciplinary book is ideal for graduate students, researchers, and more generally professionals working either in signal processing for communications or in networking applications, interested in reliable multimedia transmission. This book is also of interest to people involved in cross-layer optimization of mobile networks. Its content may provide them with other points of view on their optimization problem, enlarging the set of tools which they could use. Pierre Duhamel is director of research at CNRS/ LSS and has previously held research positions at Thomson-CSF, CNET, and ENST, where he was head of the Signal and Image Processing Department. He has served as chairman of the DSP committee and associate Editor of the IEEE Transactions on Signal Processing and Signal Processing Letters, as well as acting as a co-chair at MMSP and ICASSP conferences. He was awarded the Grand Prix France Telecom by the French Science Academy in 2000. He is co-author of more than 80 papers in international journals, 250 conference proceedings, and 28 patents. Michel Kieffer is an assistant professor in signal processing for communications at the Université Paris-Sud and a researcher at the Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France. His research interests are in joint source-channel coding and decoding techniques for the reliable transmission of multimedia contents. He serves as associate editor of Signal Processing (Elsevier). He is co-author of more than 90 contributions to journals, conference proceedings, and book chapters. - Treats joint source and channel decoding in an integrated way - Gives a clear description of the problems in the field together with the mathematical tools for their solution - Contains many detailed examples useful for practical applications of the theory to video broadcasting over mobile and wireless networks
Joint Source-channel Coding of Discrete-time Signals with Continuous Amplitudes
Author: Norbert Goertz
Publisher: World Scientific
ISBN: 1860948456
Category : Computers
Languages : en
Pages : 207
Book Description
This book provides the first comprehensive and easy-to-read discussion of joint source-channel encoding and decoding for source signals with continuous amplitudes. It is a state-of-the-art presentation of this exciting, thriving field of research, making pioneering contributions to the new concept of source-adaptive modulation.The book starts with the basic theory and the motivation for a joint realization of source and channel coding. Specialized chapters deal with practically relevant scenarios such as iterative source-channel decoding and its optimization for a given encoder, and also improved encoder designs by channel-adaptive quantization or source-adaptive modulation.Although Information Theory is not the main topic of the book ? in fact, the concept of joint source-channel coding is contradictory to the classical system design motivated by a questionable practical interpretation of the separation theorem ? this theory still provides the ultimate performance limits for any practical system, whether it uses joint source-channel coding or not. Therefore, the theoretical limits are presented in a self-contained appendix, which is a useful reference also for those not directly interested in the main topic of this book.
Publisher: World Scientific
ISBN: 1860948456
Category : Computers
Languages : en
Pages : 207
Book Description
This book provides the first comprehensive and easy-to-read discussion of joint source-channel encoding and decoding for source signals with continuous amplitudes. It is a state-of-the-art presentation of this exciting, thriving field of research, making pioneering contributions to the new concept of source-adaptive modulation.The book starts with the basic theory and the motivation for a joint realization of source and channel coding. Specialized chapters deal with practically relevant scenarios such as iterative source-channel decoding and its optimization for a given encoder, and also improved encoder designs by channel-adaptive quantization or source-adaptive modulation.Although Information Theory is not the main topic of the book ? in fact, the concept of joint source-channel coding is contradictory to the classical system design motivated by a questionable practical interpretation of the separation theorem ? this theory still provides the ultimate performance limits for any practical system, whether it uses joint source-channel coding or not. Therefore, the theoretical limits are presented in a self-contained appendix, which is a useful reference also for those not directly interested in the main topic of this book.
Joint Source Channel Coding Using Arithmetic Codes
Author: Bi Dongsheng
Publisher: Springer Nature
ISBN: 3031016750
Category : Technology & Engineering
Languages : en
Pages : 69
Book Description
Based on the encoding process, arithmetic codes can be viewed as tree codes and current proposals for decoding arithmetic codes with forbidden symbols belong to sequential decoding algorithms and their variants. In this monograph, we propose a new way of looking at arithmetic codes with forbidden symbols. If a limit is imposed on the maximum value of a key parameter in the encoder, this modified arithmetic encoder can also be modeled as a finite state machine and the code generated can be treated as a variable-length trellis code. The number of states used can be reduced and techniques used for decoding convolutional codes, such as the list Viterbi decoding algorithm, can be applied directly on the trellis. The finite state machine interpretation can be easily migrated to Markov source case. We can encode Markov sources without considering the conditional probabilities, while using the list Viterbi decoding algorithm which utilizes the conditional probabilities. We can also use context-based arithmetic coding to exploit the conditional probabilities of the Markov source and apply a finite state machine interpretation to this problem. The finite state machine interpretation also allows us to more systematically understand arithmetic codes with forbidden symbols. It allows us to find the partial distance spectrum of arithmetic codes with forbidden symbols. We also propose arithmetic codes with memories which use high memory but low implementation precision arithmetic codes. The low implementation precision results in a state machine with less complexity. The introduced input memories allow us to switch the probability functions used for arithmetic coding. Combining these two methods give us a huge parameter space of the arithmetic codes with forbidden symbols. Hence we can choose codes with better distance properties while maintaining the encoding efficiency and decoding complexity. A construction and search method is proposed and simulation results show that we can achieve a similar performance as turbo codes when we apply this approach to rate 2/3 arithmetic codes. Table of Contents: Introduction / Arithmetic Codes / Arithmetic Codes with Forbidden Symbols / Distance Property and Code Construction / Conclusion
Publisher: Springer Nature
ISBN: 3031016750
Category : Technology & Engineering
Languages : en
Pages : 69
Book Description
Based on the encoding process, arithmetic codes can be viewed as tree codes and current proposals for decoding arithmetic codes with forbidden symbols belong to sequential decoding algorithms and their variants. In this monograph, we propose a new way of looking at arithmetic codes with forbidden symbols. If a limit is imposed on the maximum value of a key parameter in the encoder, this modified arithmetic encoder can also be modeled as a finite state machine and the code generated can be treated as a variable-length trellis code. The number of states used can be reduced and techniques used for decoding convolutional codes, such as the list Viterbi decoding algorithm, can be applied directly on the trellis. The finite state machine interpretation can be easily migrated to Markov source case. We can encode Markov sources without considering the conditional probabilities, while using the list Viterbi decoding algorithm which utilizes the conditional probabilities. We can also use context-based arithmetic coding to exploit the conditional probabilities of the Markov source and apply a finite state machine interpretation to this problem. The finite state machine interpretation also allows us to more systematically understand arithmetic codes with forbidden symbols. It allows us to find the partial distance spectrum of arithmetic codes with forbidden symbols. We also propose arithmetic codes with memories which use high memory but low implementation precision arithmetic codes. The low implementation precision results in a state machine with less complexity. The introduced input memories allow us to switch the probability functions used for arithmetic coding. Combining these two methods give us a huge parameter space of the arithmetic codes with forbidden symbols. Hence we can choose codes with better distance properties while maintaining the encoding efficiency and decoding complexity. A construction and search method is proposed and simulation results show that we can achieve a similar performance as turbo codes when we apply this approach to rate 2/3 arithmetic codes. Table of Contents: Introduction / Arithmetic Codes / Arithmetic Codes with Forbidden Symbols / Distance Property and Code Construction / Conclusion
Joint Source-Channel Coding
Author: Andres Kwasinski
Publisher: John Wiley & Sons
ISBN: 1119978521
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
Consolidating knowledge on Joint Source-Channel Coding (JSCC), this book provides an indispensable resource on a key area of performance enhancement for communications networks Presenting in one volume the key theories, concepts and important developments in the area of Joint Source-Channel Coding (JSCC), this book provides the fundamental material needed to enhance the performance of digital and wireless communication systems and networks. It comprehensively introduces JSCC technologies for communications systems, including coding and decoding algorithms, and emerging applications of JSCC in current wireless communications. The book covers the full range of theoretical and technical areas before concluding with a section considering recent applications and emerging designs for JSCC. A methodical reference for academic and industrial researchers, development engineers, system engineers, system architects and software engineers, this book: Explains how JSCC leads to high performance in communication systems and networks Consolidates key material from multiple disparate sources Is an ideal reference for graduate-level courses on digital or wireless communications, as well as courses on information theory Targets professionals involved with digital and wireless communications and networking systems
Publisher: John Wiley & Sons
ISBN: 1119978521
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
Consolidating knowledge on Joint Source-Channel Coding (JSCC), this book provides an indispensable resource on a key area of performance enhancement for communications networks Presenting in one volume the key theories, concepts and important developments in the area of Joint Source-Channel Coding (JSCC), this book provides the fundamental material needed to enhance the performance of digital and wireless communication systems and networks. It comprehensively introduces JSCC technologies for communications systems, including coding and decoding algorithms, and emerging applications of JSCC in current wireless communications. The book covers the full range of theoretical and technical areas before concluding with a section considering recent applications and emerging designs for JSCC. A methodical reference for academic and industrial researchers, development engineers, system engineers, system architects and software engineers, this book: Explains how JSCC leads to high performance in communication systems and networks Consolidates key material from multiple disparate sources Is an ideal reference for graduate-level courses on digital or wireless communications, as well as courses on information theory Targets professionals involved with digital and wireless communications and networking systems
Research Anthology on Recent Trends, Tools, and Implications of Computer Programming
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1799830179
Category : Computers
Languages : en
Pages : 2069
Book Description
Programming has become a significant part of connecting theoretical development and scientific application computation. Computer programs and processes that take into account the goals and needs of the user meet with the greatest success, so it behooves software engineers to consider the human element inherent in every line of code they write. Research Anthology on Recent Trends, Tools, and Implications of Computer Programming is a vital reference source that examines the latest scholarly material on trends, techniques, and uses of various programming applications and examines the benefits and challenges of these computational developments. Highlighting a range of topics such as coding standards, software engineering, and computer systems development, this multi-volume book is ideally designed for programmers, computer scientists, software developers, analysts, security experts, IoT software programmers, computer and software engineers, students, professionals, and researchers.
Publisher: IGI Global
ISBN: 1799830179
Category : Computers
Languages : en
Pages : 2069
Book Description
Programming has become a significant part of connecting theoretical development and scientific application computation. Computer programs and processes that take into account the goals and needs of the user meet with the greatest success, so it behooves software engineers to consider the human element inherent in every line of code they write. Research Anthology on Recent Trends, Tools, and Implications of Computer Programming is a vital reference source that examines the latest scholarly material on trends, techniques, and uses of various programming applications and examines the benefits and challenges of these computational developments. Highlighting a range of topics such as coding standards, software engineering, and computer systems development, this multi-volume book is ideally designed for programmers, computer scientists, software developers, analysts, security experts, IoT software programmers, computer and software engineers, students, professionals, and researchers.
Channel Codes
Author: William Ryan
Publisher: Cambridge University Press
ISBN: 1139483013
Category : Technology & Engineering
Languages : en
Pages : 709
Book Description
Channel coding lies at the heart of digital communication and data storage, and this detailed introduction describes the core theory as well as decoding algorithms, implementation details, and performance analyses. In this book, Professors Ryan and Lin provide clear information on modern channel codes, including turbo and low-density parity-check (LDPC) codes. They also present detailed coverage of BCH codes, Reed-Solomon codes, convolutional codes, finite geometry codes, and product codes, providing a one-stop resource for both classical and modern coding techniques. Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then extend to advanced topics such as code ensemble performance analyses and algebraic code design. 250 varied and stimulating end-of-chapter problems are also included to test and enhance learning, making this an essential resource for students and practitioners alike.
Publisher: Cambridge University Press
ISBN: 1139483013
Category : Technology & Engineering
Languages : en
Pages : 709
Book Description
Channel coding lies at the heart of digital communication and data storage, and this detailed introduction describes the core theory as well as decoding algorithms, implementation details, and performance analyses. In this book, Professors Ryan and Lin provide clear information on modern channel codes, including turbo and low-density parity-check (LDPC) codes. They also present detailed coverage of BCH codes, Reed-Solomon codes, convolutional codes, finite geometry codes, and product codes, providing a one-stop resource for both classical and modern coding techniques. Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then extend to advanced topics such as code ensemble performance analyses and algebraic code design. 250 varied and stimulating end-of-chapter problems are also included to test and enhance learning, making this an essential resource for students and practitioners alike.
Channel Coding in the Presence of Side Information
Author: Guy Keshet
Publisher: Now Publishers Inc
ISBN: 1601980485
Category : Computers
Languages : en
Pages : 154
Book Description
Channel Coding in the Presence of Side Information reviews the concepts and methods of communication systems equipped with side information both from the theoretical and practical points of view. It is a comprehensive review that gives the reader an insightful introduction to one of the most important topics in modern communications systems.
Publisher: Now Publishers Inc
ISBN: 1601980485
Category : Computers
Languages : en
Pages : 154
Book Description
Channel Coding in the Presence of Side Information reviews the concepts and methods of communication systems equipped with side information both from the theoretical and practical points of view. It is a comprehensive review that gives the reader an insightful introduction to one of the most important topics in modern communications systems.
Turbo Coding, Turbo Equalisation and Space-Time Coding
Author: Lajos Hanzo
Publisher: John Wiley & Sons
ISBN: 0470978333
Category : Technology & Engineering
Languages : en
Pages : 839
Book Description
Covering the full range of channel codes from the most conventional through to the most advanced, the second edition of Turbo Coding, Turbo Equalisation and Space-Time Coding is a self-contained reference on channel coding for wireless channels. The book commences with a historical perspective on the topic, which leads to two basic component codes, convolutional and block codes. It then moves on to turbo codes which exploit iterative decoding by using algorithms, such as the Maximum-A-Posteriori (MAP), Log-MAP and Soft Output Viterbi Algorithm (SOVA), comparing their performance. It also compares Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM), Bit-Interleaved Coded Modulation (BICM) and Iterative BICM (BICM-ID) under various channel conditions. The horizon of the content is then extended to incorporate topics which have found their way into diverse standard systems. These include space-time block and trellis codes, as well as other Multiple-Input Multiple-Output (MIMO) schemes and near-instantaneously Adaptive Quadrature Amplitude Modulation (AQAM). The book also elaborates on turbo equalisation by providing a detailed portrayal of recent advances in partial response modulation schemes using diverse channel codes. A radically new aspect for this second edition is the discussion of multi-level coding and sphere-packing schemes, Extrinsic Information Transfer (EXIT) charts, as well as an introduction to the family of Generalized Low Density Parity Check codes. This new edition includes recent advances in near-capacity turbo-transceivers as well as new sections on multi-level coding schemes and of Generalized Low Density Parity Check codes Comparatively studies diverse channel coded and turbo detected systems to give all-inclusive information for researchers, engineers and students Details EXIT-chart based irregular transceiver designs Uses rich performance comparisons as well as diverse near-capacity design examples
Publisher: John Wiley & Sons
ISBN: 0470978333
Category : Technology & Engineering
Languages : en
Pages : 839
Book Description
Covering the full range of channel codes from the most conventional through to the most advanced, the second edition of Turbo Coding, Turbo Equalisation and Space-Time Coding is a self-contained reference on channel coding for wireless channels. The book commences with a historical perspective on the topic, which leads to two basic component codes, convolutional and block codes. It then moves on to turbo codes which exploit iterative decoding by using algorithms, such as the Maximum-A-Posteriori (MAP), Log-MAP and Soft Output Viterbi Algorithm (SOVA), comparing their performance. It also compares Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM), Bit-Interleaved Coded Modulation (BICM) and Iterative BICM (BICM-ID) under various channel conditions. The horizon of the content is then extended to incorporate topics which have found their way into diverse standard systems. These include space-time block and trellis codes, as well as other Multiple-Input Multiple-Output (MIMO) schemes and near-instantaneously Adaptive Quadrature Amplitude Modulation (AQAM). The book also elaborates on turbo equalisation by providing a detailed portrayal of recent advances in partial response modulation schemes using diverse channel codes. A radically new aspect for this second edition is the discussion of multi-level coding and sphere-packing schemes, Extrinsic Information Transfer (EXIT) charts, as well as an introduction to the family of Generalized Low Density Parity Check codes. This new edition includes recent advances in near-capacity turbo-transceivers as well as new sections on multi-level coding schemes and of Generalized Low Density Parity Check codes Comparatively studies diverse channel coded and turbo detected systems to give all-inclusive information for researchers, engineers and students Details EXIT-chart based irregular transceiver designs Uses rich performance comparisons as well as diverse near-capacity design examples
Network Information Theory
Author: Abbas El Gamal
Publisher: Cambridge University Press
ISBN: 1139503146
Category : Technology & Engineering
Languages : en
Pages : 666
Book Description
This comprehensive treatment of network information theory and its applications provides the first unified coverage of both classical and recent results. With an approach that balances the introduction of new models and new coding techniques, readers are guided through Shannon's point-to-point information theory, single-hop networks, multihop networks, and extensions to distributed computing, secrecy, wireless communication, and networking. Elementary mathematical tools and techniques are used throughout, requiring only basic knowledge of probability, whilst unified proofs of coding theorems are based on a few simple lemmas, making the text accessible to newcomers. Key topics covered include successive cancellation and superposition coding, MIMO wireless communication, network coding, and cooperative relaying. Also covered are feedback and interactive communication, capacity approximations and scaling laws, and asynchronous and random access channels. This book is ideal for use in the classroom, for self-study, and as a reference for researchers and engineers in industry and academia.
Publisher: Cambridge University Press
ISBN: 1139503146
Category : Technology & Engineering
Languages : en
Pages : 666
Book Description
This comprehensive treatment of network information theory and its applications provides the first unified coverage of both classical and recent results. With an approach that balances the introduction of new models and new coding techniques, readers are guided through Shannon's point-to-point information theory, single-hop networks, multihop networks, and extensions to distributed computing, secrecy, wireless communication, and networking. Elementary mathematical tools and techniques are used throughout, requiring only basic knowledge of probability, whilst unified proofs of coding theorems are based on a few simple lemmas, making the text accessible to newcomers. Key topics covered include successive cancellation and superposition coding, MIMO wireless communication, network coding, and cooperative relaying. Also covered are feedback and interactive communication, capacity approximations and scaling laws, and asynchronous and random access channels. This book is ideal for use in the classroom, for self-study, and as a reference for researchers and engineers in industry and academia.
Near-Capacity Variable-Length Coding
Author: Lajos Hanzo
Publisher: John Wiley & Sons
ISBN: 1119957311
Category : Technology & Engineering
Languages : en
Pages : 514
Book Description
Recent developments such as the invention of powerful turbo-decoding and irregular designs, together with the increase in the number of potential applications to multimedia signal compression, have increased the importance of variable length coding (VLC). Providing insights into the very latest research, the authors examine the design of diverse near-capacity VLC codes in the context of wireless telecommunications. The book commences with an introduction to Information Theory, followed by a discussion of Regular as well as Irregular Variable Length Coding and their applications in joint source and channel coding. Near-capacity designs are created using Extrinsic Information Transfer (EXIT) chart analysis. The latest techniques are discussed, outlining radical concepts such as Genetic Algorithm (GA) aided construction of diverse VLC codes. The book concludes with two chapters on VLC-based space-time transceivers as well as on frequency-hopping assisted schemes, followed by suggestions for future work on the topic. Surveys the historic evolution and development of VLCs Discusses the very latest research into VLC codes Introduces the novel concept of Irregular VLCs and their application in joint-source and channel coding
Publisher: John Wiley & Sons
ISBN: 1119957311
Category : Technology & Engineering
Languages : en
Pages : 514
Book Description
Recent developments such as the invention of powerful turbo-decoding and irregular designs, together with the increase in the number of potential applications to multimedia signal compression, have increased the importance of variable length coding (VLC). Providing insights into the very latest research, the authors examine the design of diverse near-capacity VLC codes in the context of wireless telecommunications. The book commences with an introduction to Information Theory, followed by a discussion of Regular as well as Irregular Variable Length Coding and their applications in joint source and channel coding. Near-capacity designs are created using Extrinsic Information Transfer (EXIT) chart analysis. The latest techniques are discussed, outlining radical concepts such as Genetic Algorithm (GA) aided construction of diverse VLC codes. The book concludes with two chapters on VLC-based space-time transceivers as well as on frequency-hopping assisted schemes, followed by suggestions for future work on the topic. Surveys the historic evolution and development of VLCs Discusses the very latest research into VLC codes Introduces the novel concept of Irregular VLCs and their application in joint-source and channel coding