Author: W.H. King
Publisher: Springer Science & Business Media
ISBN: 1489917861
Category : Science
Languages : en
Pages : 215
Book Description
Atomic and nuclear physics are two flourishing but distinct branches of physics; the subject of isotope shifts in atomic spectra is one of the few that links these two branches. It is a subject that has been studied for well over fifty years, but interest in the subject, far from flagging, has been stimulated in recent years. Fast computers have enabled theoreticians to evaluate the properties of many-electron atoms, and laser spectroscopy has made it possible to measure isotope shifts in the previously unmeasurable areas of very rare isotopes, short-lived radioactive isotopes, weak transitions, and transitions involving high-lying atomic levels. Isotope shifts can now be measured with greater accuracy than before in both optical transitions and x-ray transitions of muonic atoms; this improved accuracy is revealing new facets of the subject. I am very grateful to Dr. H. G. Kuhn, F. R. S. , for having introduced me to the subject in the 1950s, and for supervising my efforts to measure isotope shifts in the spectrum of ruthenium. I thus approach the subject as an experimental atomic spectroscopist. This bias is obviously apparent in my use of the spectroscopist's notation of lower-upper for a transition, rather than the nuclear physicist's upper-lower. My reasons are given in Section 1. 3 and I hope that nuclear physicists will forgive me for using this notation even for muonic x-ray transitions.
Isotope Shifts in Atomic Spectra
Author: W.H. King
Publisher: Springer Science & Business Media
ISBN: 1489917861
Category : Science
Languages : en
Pages : 215
Book Description
Atomic and nuclear physics are two flourishing but distinct branches of physics; the subject of isotope shifts in atomic spectra is one of the few that links these two branches. It is a subject that has been studied for well over fifty years, but interest in the subject, far from flagging, has been stimulated in recent years. Fast computers have enabled theoreticians to evaluate the properties of many-electron atoms, and laser spectroscopy has made it possible to measure isotope shifts in the previously unmeasurable areas of very rare isotopes, short-lived radioactive isotopes, weak transitions, and transitions involving high-lying atomic levels. Isotope shifts can now be measured with greater accuracy than before in both optical transitions and x-ray transitions of muonic atoms; this improved accuracy is revealing new facets of the subject. I am very grateful to Dr. H. G. Kuhn, F. R. S. , for having introduced me to the subject in the 1950s, and for supervising my efforts to measure isotope shifts in the spectrum of ruthenium. I thus approach the subject as an experimental atomic spectroscopist. This bias is obviously apparent in my use of the spectroscopist's notation of lower-upper for a transition, rather than the nuclear physicist's upper-lower. My reasons are given in Section 1. 3 and I hope that nuclear physicists will forgive me for using this notation even for muonic x-ray transitions.
Publisher: Springer Science & Business Media
ISBN: 1489917861
Category : Science
Languages : en
Pages : 215
Book Description
Atomic and nuclear physics are two flourishing but distinct branches of physics; the subject of isotope shifts in atomic spectra is one of the few that links these two branches. It is a subject that has been studied for well over fifty years, but interest in the subject, far from flagging, has been stimulated in recent years. Fast computers have enabled theoreticians to evaluate the properties of many-electron atoms, and laser spectroscopy has made it possible to measure isotope shifts in the previously unmeasurable areas of very rare isotopes, short-lived radioactive isotopes, weak transitions, and transitions involving high-lying atomic levels. Isotope shifts can now be measured with greater accuracy than before in both optical transitions and x-ray transitions of muonic atoms; this improved accuracy is revealing new facets of the subject. I am very grateful to Dr. H. G. Kuhn, F. R. S. , for having introduced me to the subject in the 1950s, and for supervising my efforts to measure isotope shifts in the spectrum of ruthenium. I thus approach the subject as an experimental atomic spectroscopist. This bias is obviously apparent in my use of the spectroscopist's notation of lower-upper for a transition, rather than the nuclear physicist's upper-lower. My reasons are given in Section 1. 3 and I hope that nuclear physicists will forgive me for using this notation even for muonic x-ray transitions.
The Theory of Atomic Structure and Spectra
Author: Robert D. Cowan
Publisher: Univ of California Press
ISBN: 0520906152
Category : Science
Languages : en
Pages : 752
Book Description
Both the interpretation of atomic spectra and the application of atomic spectroscopy to current problems in astrophysics, laser physics, and thermonuclear plasmas require a thorough knowledge of the Slater-Condon theory of atomic structure and spectra. This book gathers together aspects of the theory that are widely scattered in the literature and augments them to produce a coherent set of closed-form equations suitable both for computer calculations on cases of arbitrary complexity and for hand calculations for very simple cases.
Publisher: Univ of California Press
ISBN: 0520906152
Category : Science
Languages : en
Pages : 752
Book Description
Both the interpretation of atomic spectra and the application of atomic spectroscopy to current problems in astrophysics, laser physics, and thermonuclear plasmas require a thorough knowledge of the Slater-Condon theory of atomic structure and spectra. This book gathers together aspects of the theory that are widely scattered in the literature and augments them to produce a coherent set of closed-form equations suitable both for computer calculations on cases of arbitrary complexity and for hand calculations for very simple cases.
4th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas
Author:
Publisher:
ISBN:
Category : Atomic spectra
Languages : en
Pages : 208
Book Description
Publisher:
ISBN:
Category : Atomic spectra
Languages : en
Pages : 208
Book Description
Isotope Shift in the Atomic Spectrum of Carbon
Author: Clyde R. Burnett
Publisher:
ISBN:
Category : Carbon
Languages : en
Pages : 100
Book Description
Publisher:
ISBN:
Category : Carbon
Languages : en
Pages : 100
Book Description
NBS Special Publication
Author:
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 688
Book Description
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 688
Book Description
Isotope Shift in the Atomic Spectrum of Nitrogen
Author: John Richard Holmes
Publisher:
ISBN:
Category :
Languages : en
Pages : 106
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 106
Book Description
Isotopes in Condensed Matter
Author: Vladimir G. Plekhanov
Publisher: Springer Science & Business Media
ISBN: 3642287239
Category : Technology & Engineering
Languages : en
Pages : 299
Book Description
This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed. The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.
Publisher: Springer Science & Business Media
ISBN: 3642287239
Category : Technology & Engineering
Languages : en
Pages : 299
Book Description
This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed. The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.
Atomic Spectra and Radiative Transitions
Author: I.I. Sobelman
Publisher: Springer Science & Business Media
ISBN: 3662059053
Category : Science
Languages : en
Pages : 318
Book Description
My previous book on the theory of atomic spectra was published in Russian about fifteen years ago. Besides the traditional problems usually included in a book on atomic spectroscopy, some other problems arising in various applications of spectroscopic methods were also discussed in the book. These include, for example, continuous spectrum radiation, excitation of atoms, and spectral line broadening. Extensive revisions were made in the English version of the book published by the Pergamon Press in 1972, especially in the chapter devoted to the problem of excitation of atoms. This book is intended as the first part of a two-volume presentation of the theory of atomic spectra, atomic radiative transitions, excitation of atoms, and spectral line broadening. The aim in preparing these new books has been to stress the problems connected with the most interesting applications of atomic spectroscopy to plasma diagnostics, astrophysics, laser physics, and other fields, which have been developed very intensively in recent years. The content of this first volume, devoted to the systematics of atomic spectra and radiative transitions, is similar to that of Chapters 1-6, 8 and 9 of the old book, but considerable revision has been made. Some sections, such as those on the Hartree-Fock method, the Dirac equation, and relativistic corrections, have been deleted. At the same time, more attention is paid to radiative transitions. More extensive tables of oscillator strengths, prob abilities, and effective cross sections of radiative transitions in discrete and continuous spectra are given.
Publisher: Springer Science & Business Media
ISBN: 3662059053
Category : Science
Languages : en
Pages : 318
Book Description
My previous book on the theory of atomic spectra was published in Russian about fifteen years ago. Besides the traditional problems usually included in a book on atomic spectroscopy, some other problems arising in various applications of spectroscopic methods were also discussed in the book. These include, for example, continuous spectrum radiation, excitation of atoms, and spectral line broadening. Extensive revisions were made in the English version of the book published by the Pergamon Press in 1972, especially in the chapter devoted to the problem of excitation of atoms. This book is intended as the first part of a two-volume presentation of the theory of atomic spectra, atomic radiative transitions, excitation of atoms, and spectral line broadening. The aim in preparing these new books has been to stress the problems connected with the most interesting applications of atomic spectroscopy to plasma diagnostics, astrophysics, laser physics, and other fields, which have been developed very intensively in recent years. The content of this first volume, devoted to the systematics of atomic spectra and radiative transitions, is similar to that of Chapters 1-6, 8 and 9 of the old book, but considerable revision has been made. Some sections, such as those on the Hartree-Fock method, the Dirac equation, and relativistic corrections, have been deleted. At the same time, more attention is paid to radiative transitions. More extensive tables of oscillator strengths, prob abilities, and effective cross sections of radiative transitions in discrete and continuous spectra are given.
Advances in Atomic, Molecular, and Optical Physics
Author:
Publisher: Elsevier
ISBN: 0080456081
Category : Science
Languages : en
Pages : 605
Book Description
Benjamin Bederson contributed to the world of physics in many areas: in atomic physics, where he achieved renown by his scattering and polarizability experiments, as the Editor-in-Chief for the American Physical Society, where he saw the introduction of electronic publishing and a remarkable growth of the APS journals, with ever increasing world-wide contributions to these highly esteemed journals, and as the originator of a number of international physics conferences in the fields of atomic and collision physics, which are continuing to this day. Bederson was also a great teacher and university administrator. The first part of this volume of Advances in Atomic, Molecular, and Optical Physics (AAMOP), entitled Benjamin Bederson: Works, Comments and Legacies, contains articles written from a personal perspective. His days at Los Alamos during World War II, working on the A bomb, are recounted by V. Fitch. H. Walther writes on the time when both were editors of AAMOP. H. Lustig, E. Merzbacher and B. Crasemann, with whom Bederson had a long-term association at the American Physical Society, contribute their experiences, one of them in the style of a poem. C.D. Rice recalls his days when he was Dean of the Faculty of Arts and Science at NYU, and the education in physics that he received from Bederson, then Dean of the Graduate School. The contribution by R. Stuewer is on Bederson as physicist historian (his latest interest). N. Lane draws some parallels between "two civic scientists, Benjamin Bederson and the other Benjamin". The papers are introduced by H.H. Stroke, in an overview of Bederson's career. A biography and bibliography are included. The second part of the volume contains scientific articles on the Casimir effects (L. Spruch), dipole polarizabilities (X. Chu, A. Dalgarno), two-electron molecular bonds revisited (G. Chen, S.A. Chin, Y. Dou, K.T. Kapale, M. Kim, A.A. Svidzinsky, K. Uretkin, H. Xiong, M.O. Scully, and resonance fluorescence of two-level atoms (H. Walther). J. Pinard and H.H. Stroke review spectroscopy with radioactive atoms. T. Miller writes on electron attachment and detachment in gases, and, with H. Gould, on recent developments in the measurement of static electric dipole polarizabilities. R. Celotta and J.A. Stroscio's most recent work on trapping and moving atoms on surfaces is contributed here. C.C. Lin and J.B. Borrard's article is on electron-impact excitation cross sections. The late Edward Pollack wrote his last paper for this volume, Atomic and Ionic Collisions. L. Vuskovic and S. Popovi ́c write on atomic interactions in a weakly ionized gas and ionizing shock waves. The last scientific article is by H. Kleinpoppen, B. Lohmann, A. Grum-Grzhimailo and U. Becker on approaches to perfect/complete scattering in atomic and molecular physics. The book ends with an essay on teaching by R.E. Collins. - Benjamin Bederson - Atomic Physicist, Civil Scientist - The Physical Review and Its Editor - Los Alamos in World War II - View from Below - Physics in Poetry - Casimir Effects - Pedagogical Notes - Atomic Physics in Collisions, Polarizabilities, Gases, Atomic Physics and Radioactive Atoms - Molecular Bond Revisited - Resonance Fluorescence in 2-Level Atoms - Trapping and Moving Atoms on Surfaces
Publisher: Elsevier
ISBN: 0080456081
Category : Science
Languages : en
Pages : 605
Book Description
Benjamin Bederson contributed to the world of physics in many areas: in atomic physics, where he achieved renown by his scattering and polarizability experiments, as the Editor-in-Chief for the American Physical Society, where he saw the introduction of electronic publishing and a remarkable growth of the APS journals, with ever increasing world-wide contributions to these highly esteemed journals, and as the originator of a number of international physics conferences in the fields of atomic and collision physics, which are continuing to this day. Bederson was also a great teacher and university administrator. The first part of this volume of Advances in Atomic, Molecular, and Optical Physics (AAMOP), entitled Benjamin Bederson: Works, Comments and Legacies, contains articles written from a personal perspective. His days at Los Alamos during World War II, working on the A bomb, are recounted by V. Fitch. H. Walther writes on the time when both were editors of AAMOP. H. Lustig, E. Merzbacher and B. Crasemann, with whom Bederson had a long-term association at the American Physical Society, contribute their experiences, one of them in the style of a poem. C.D. Rice recalls his days when he was Dean of the Faculty of Arts and Science at NYU, and the education in physics that he received from Bederson, then Dean of the Graduate School. The contribution by R. Stuewer is on Bederson as physicist historian (his latest interest). N. Lane draws some parallels between "two civic scientists, Benjamin Bederson and the other Benjamin". The papers are introduced by H.H. Stroke, in an overview of Bederson's career. A biography and bibliography are included. The second part of the volume contains scientific articles on the Casimir effects (L. Spruch), dipole polarizabilities (X. Chu, A. Dalgarno), two-electron molecular bonds revisited (G. Chen, S.A. Chin, Y. Dou, K.T. Kapale, M. Kim, A.A. Svidzinsky, K. Uretkin, H. Xiong, M.O. Scully, and resonance fluorescence of two-level atoms (H. Walther). J. Pinard and H.H. Stroke review spectroscopy with radioactive atoms. T. Miller writes on electron attachment and detachment in gases, and, with H. Gould, on recent developments in the measurement of static electric dipole polarizabilities. R. Celotta and J.A. Stroscio's most recent work on trapping and moving atoms on surfaces is contributed here. C.C. Lin and J.B. Borrard's article is on electron-impact excitation cross sections. The late Edward Pollack wrote his last paper for this volume, Atomic and Ionic Collisions. L. Vuskovic and S. Popovi ́c write on atomic interactions in a weakly ionized gas and ionizing shock waves. The last scientific article is by H. Kleinpoppen, B. Lohmann, A. Grum-Grzhimailo and U. Becker on approaches to perfect/complete scattering in atomic and molecular physics. The book ends with an essay on teaching by R.E. Collins. - Benjamin Bederson - Atomic Physicist, Civil Scientist - The Physical Review and Its Editor - Los Alamos in World War II - View from Below - Physics in Poetry - Casimir Effects - Pedagogical Notes - Atomic Physics in Collisions, Polarizabilities, Gases, Atomic Physics and Radioactive Atoms - Molecular Bond Revisited - Resonance Fluorescence in 2-Level Atoms - Trapping and Moving Atoms on Surfaces
Exploring the World with the Laser
Author: Dieter Meschede
Publisher: Springer
ISBN: 3319643460
Category : Science
Languages : en
Pages : 799
Book Description
This edition contains carefully selected contributions by leading scientists in high-resolution laser spectroscopy, quantum optics and laser physics. Emphasis is given to ultrafast laser phenomena, implementations of frequency combs, precision spectroscopy and high resolution metrology. Furthermore, applications of the fundamentals of quantum mechanics are widely covered. This book is dedicated to Nobel prize winner Theodor W. Hänsch on the occasion of his 75th birthday. The contributions are reprinted from a topical collection published in Applied Physics B, 2016. Selected contributions are available open access under a CC BY 4.0 license via link.springer.com. Please see the copyright page for further details.
Publisher: Springer
ISBN: 3319643460
Category : Science
Languages : en
Pages : 799
Book Description
This edition contains carefully selected contributions by leading scientists in high-resolution laser spectroscopy, quantum optics and laser physics. Emphasis is given to ultrafast laser phenomena, implementations of frequency combs, precision spectroscopy and high resolution metrology. Furthermore, applications of the fundamentals of quantum mechanics are widely covered. This book is dedicated to Nobel prize winner Theodor W. Hänsch on the occasion of his 75th birthday. The contributions are reprinted from a topical collection published in Applied Physics B, 2016. Selected contributions are available open access under a CC BY 4.0 license via link.springer.com. Please see the copyright page for further details.