Author: Clyde R. Burnett
Publisher:
ISBN:
Category : Carbon
Languages : en
Pages : 100
Book Description
Isotope Shifts in Atomic Spectra
Author: W.H. King
Publisher: Springer Science & Business Media
ISBN: 1489917861
Category : Science
Languages : en
Pages : 215
Book Description
Atomic and nuclear physics are two flourishing but distinct branches of physics; the subject of isotope shifts in atomic spectra is one of the few that links these two branches. It is a subject that has been studied for well over fifty years, but interest in the subject, far from flagging, has been stimulated in recent years. Fast computers have enabled theoreticians to evaluate the properties of many-electron atoms, and laser spectroscopy has made it possible to measure isotope shifts in the previously unmeasurable areas of very rare isotopes, short-lived radioactive isotopes, weak transitions, and transitions involving high-lying atomic levels. Isotope shifts can now be measured with greater accuracy than before in both optical transitions and x-ray transitions of muonic atoms; this improved accuracy is revealing new facets of the subject. I am very grateful to Dr. H. G. Kuhn, F. R. S. , for having introduced me to the subject in the 1950s, and for supervising my efforts to measure isotope shifts in the spectrum of ruthenium. I thus approach the subject as an experimental atomic spectroscopist. This bias is obviously apparent in my use of the spectroscopist's notation of lower-upper for a transition, rather than the nuclear physicist's upper-lower. My reasons are given in Section 1. 3 and I hope that nuclear physicists will forgive me for using this notation even for muonic x-ray transitions.
Publisher: Springer Science & Business Media
ISBN: 1489917861
Category : Science
Languages : en
Pages : 215
Book Description
Atomic and nuclear physics are two flourishing but distinct branches of physics; the subject of isotope shifts in atomic spectra is one of the few that links these two branches. It is a subject that has been studied for well over fifty years, but interest in the subject, far from flagging, has been stimulated in recent years. Fast computers have enabled theoreticians to evaluate the properties of many-electron atoms, and laser spectroscopy has made it possible to measure isotope shifts in the previously unmeasurable areas of very rare isotopes, short-lived radioactive isotopes, weak transitions, and transitions involving high-lying atomic levels. Isotope shifts can now be measured with greater accuracy than before in both optical transitions and x-ray transitions of muonic atoms; this improved accuracy is revealing new facets of the subject. I am very grateful to Dr. H. G. Kuhn, F. R. S. , for having introduced me to the subject in the 1950s, and for supervising my efforts to measure isotope shifts in the spectrum of ruthenium. I thus approach the subject as an experimental atomic spectroscopist. This bias is obviously apparent in my use of the spectroscopist's notation of lower-upper for a transition, rather than the nuclear physicist's upper-lower. My reasons are given in Section 1. 3 and I hope that nuclear physicists will forgive me for using this notation even for muonic x-ray transitions.
U.S. Government Research Reports
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1076
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1076
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 748
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 748
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1028
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1028
Book Description
NBS Special Publication
Author:
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 790
Book Description
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 790
Book Description
Progress in Atomic Spectroscopy
Author: W. Hanle
Publisher: Springer Science & Business Media
ISBN: 1461339359
Category : Science
Languages : en
Pages : 811
Book Description
W. HANLE and H. KLEINPOPPEN In 1919, in the first edition of Atombau and Spektrallinien, Sommerfeld referred to the immense amount of information which had been accumu lated during the first period of 60 years of spectroscopic practice. Sommer feld emphasized that the names of Planck and Bohr would be connected forever with the efforts that had been made to understand the physics and the theory of spectral lines. Another period of almost 60 years has elapsed since the first edition of Sommerfeld's famous monograph. As the editors of this monograph, Progress in Atomic Spectroscopy, we feel that the present period is best characterized by the large variety of new spec troscopic methods that have been invented in the last decades. Spectroscopy has always been involved in the field of research on atomic structure and the interaction of light and atoms. The development of new spectroscopic methods (i.e., new as compared to the traditional optical methods) has led to many outstanding achievements, which, together with the increase of activity over the last decades, appear as a kind of renaissance of atomic spectroscopy.
Publisher: Springer Science & Business Media
ISBN: 1461339359
Category : Science
Languages : en
Pages : 811
Book Description
W. HANLE and H. KLEINPOPPEN In 1919, in the first edition of Atombau and Spektrallinien, Sommerfeld referred to the immense amount of information which had been accumu lated during the first period of 60 years of spectroscopic practice. Sommer feld emphasized that the names of Planck and Bohr would be connected forever with the efforts that had been made to understand the physics and the theory of spectral lines. Another period of almost 60 years has elapsed since the first edition of Sommerfeld's famous monograph. As the editors of this monograph, Progress in Atomic Spectroscopy, we feel that the present period is best characterized by the large variety of new spec troscopic methods that have been invented in the last decades. Spectroscopy has always been involved in the field of research on atomic structure and the interaction of light and atoms. The development of new spectroscopic methods (i.e., new as compared to the traditional optical methods) has led to many outstanding achievements, which, together with the increase of activity over the last decades, appear as a kind of renaissance of atomic spectroscopy.
Isotope Geology
Author: Kalervo Rankama
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 566
Book Description
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 566
Book Description
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 960
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 960
Book Description
Bibliography on Atomic Energy Levels and Spectra
Author: Romuald Zalubas
Publisher:
ISBN:
Category : Atomic spectroscopy
Languages : en
Pages : 124
Book Description
Publisher:
ISBN:
Category : Atomic spectroscopy
Languages : en
Pages : 124
Book Description
Early Stages of Oxygen Precipitation in Silicon
Author: R. Jones
Publisher: Springer Science & Business Media
ISBN: 9400903553
Category : Science
Languages : en
Pages : 535
Book Description
It was fOlllld as long ago as 1954 that heating oxygen rich silicon to around 450°C produced electrical active defects - the so called thermal donors. The inference was that the donors were created by some defect produced by the aggregation of oxygen. Since then, there has been an enor mous amount of work carried out to elucidate the detailed mechanism by which they, and other defects, are generated. This task has been made all the more relevant as silicon is one of the most important technological ma terials in everyday use and oxygen is its most common impurity. However, even after forty years, the details of the processes by which the donors and other defects are generated are still obscure. The difficulty of the problem is made more apparent when it is realised that there is only one oxygen atom in about ten thousand silicon atoms and so it is difficult to devise experiments to 'see' what happens during the early stages of oxygen precipitation when complexes of two, three or four 0xygen atoms are formed. However, new important new findings have emerged from experiments such as the careful monitoring of the changes in the infra red lattice absorption spectra over long durations, the observation of the growth of new bands which are correlated with electronic infra-red data, and high resolution ENDOR studies. In addition, progress has been made in the improved control of samples containing oxygen, carbon, nitrogen and hydrogen.
Publisher: Springer Science & Business Media
ISBN: 9400903553
Category : Science
Languages : en
Pages : 535
Book Description
It was fOlllld as long ago as 1954 that heating oxygen rich silicon to around 450°C produced electrical active defects - the so called thermal donors. The inference was that the donors were created by some defect produced by the aggregation of oxygen. Since then, there has been an enor mous amount of work carried out to elucidate the detailed mechanism by which they, and other defects, are generated. This task has been made all the more relevant as silicon is one of the most important technological ma terials in everyday use and oxygen is its most common impurity. However, even after forty years, the details of the processes by which the donors and other defects are generated are still obscure. The difficulty of the problem is made more apparent when it is realised that there is only one oxygen atom in about ten thousand silicon atoms and so it is difficult to devise experiments to 'see' what happens during the early stages of oxygen precipitation when complexes of two, three or four 0xygen atoms are formed. However, new important new findings have emerged from experiments such as the careful monitoring of the changes in the infra red lattice absorption spectra over long durations, the observation of the growth of new bands which are correlated with electronic infra-red data, and high resolution ENDOR studies. In addition, progress has been made in the improved control of samples containing oxygen, carbon, nitrogen and hydrogen.