Isometric Embedding of Riemannian Manifolds in Euclidean Spaces

Isometric Embedding of Riemannian Manifolds in Euclidean Spaces PDF Author: Qing Han
Publisher: American Mathematical Soc.
ISBN: 0821840711
Category : Mathematics
Languages : en
Pages : 278

Get Book Here

Book Description
The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R}^3$. The emphasis is on those PDE techniques which are essential to the most important results of the last century. The classic results in this book include the Janet-Cartan Theorem, Nirenberg's solution of the Weyl problem, and Nash's Embedding Theorem, with a simplified proof by Gunther. The book also includes the main results from the past twenty years, both local and global, on the isometric embedding of surfaces in Euclidean 3-space. The work will be indispensable to researchers in the area. Moreover, the authors integrate the results and techniques into a unified whole, providing a good entry point into the area for advanced graduate students or anyone interested in this subject. The authors avoid what is technically complicated. Background knowledge is kept to an essential minimum: a one-semester course in differential geometry and a one-year course in partial differential equations.

Isometric Embedding of Riemannian Manifolds in Euclidean Spaces

Isometric Embedding of Riemannian Manifolds in Euclidean Spaces PDF Author: Qing Han
Publisher: American Mathematical Soc.
ISBN: 0821840711
Category : Mathematics
Languages : en
Pages : 278

Get Book Here

Book Description
The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R}^3$. The emphasis is on those PDE techniques which are essential to the most important results of the last century. The classic results in this book include the Janet-Cartan Theorem, Nirenberg's solution of the Weyl problem, and Nash's Embedding Theorem, with a simplified proof by Gunther. The book also includes the main results from the past twenty years, both local and global, on the isometric embedding of surfaces in Euclidean 3-space. The work will be indispensable to researchers in the area. Moreover, the authors integrate the results and techniques into a unified whole, providing a good entry point into the area for advanced graduate students or anyone interested in this subject. The authors avoid what is technically complicated. Background knowledge is kept to an essential minimum: a one-semester course in differential geometry and a one-year course in partial differential equations.

Isometric Embedding of Riemannian Manifolds in Euclidean Spaces

Isometric Embedding of Riemannian Manifolds in Euclidean Spaces PDF Author: Qing Han
Publisher: American Mathematical Society(RI)
ISBN: 9781470413576
Category : MATHEMATICS
Languages : en
Pages : 278

Get Book Here

Book Description
The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R} DEG

Isometric Embeddings of Riemannian and Pseudo-Riemannian Manifolds

Isometric Embeddings of Riemannian and Pseudo-Riemannian Manifolds PDF Author: Robert Everist Greene
Publisher: American Mathematical Soc.
ISBN: 0821812971
Category : Embeddings (Mathematics)
Languages : en
Pages : 69

Get Book Here

Book Description


The Laplacian on a Riemannian Manifold

The Laplacian on a Riemannian Manifold PDF Author: Steven Rosenberg
Publisher: Cambridge University Press
ISBN: 9780521468312
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.

Riemannian Manifolds

Riemannian Manifolds PDF Author: John M. Lee
Publisher: Springer Science & Business Media
ISBN: 0387227261
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

Total Mean Curvature and Submanifolds of Finite Type

Total Mean Curvature and Submanifolds of Finite Type PDF Author: Bang-yen Chen
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9789814616683
Category : Mathematics
Languages : en
Pages : 467

Get Book Here

Book Description
During the last four decades, there were numerous important developments on total mean curvature and the theory of finite type submanifolds. This unique and expanded second edition comprises a comprehensive account of the latest updates and new results that cover total mean curvature and submanifolds of finite type. The longstanding biharmonic conjecture of the author's and the generalized biharmonic conjectures are also presented in details. This book will be of use to graduate students and researchers in the field of geometry.

An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry PDF Author: Leonor Godinho
Publisher: Springer
ISBN: 3319086669
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Hamilton’s Ricci Flow

Hamilton’s Ricci Flow PDF Author: Bennett Chow
Publisher: American Mathematical Society, Science Press
ISBN: 1470473690
Category : Mathematics
Languages : en
Pages : 648

Get Book Here

Book Description
Ricci flow is a powerful analytic method for studying the geometry and topology of manifolds. This book is an introduction to Ricci flow for graduate students and mathematicians interested in working in the subject. To this end, the first chapter is a review of the relevant basics of Riemannian geometry. For the benefit of the student, the text includes a number of exercises of varying difficulty. The book also provides brief introductions to some general methods of geometric analysis and other geometric flows. Comparisons are made between the Ricci flow and the linear heat equation, mean curvature flow, and other geometric evolution equations whenever possible. Several topics of Hamilton's program are covered, such as short time existence, Harnack inequalities, Ricci solitons, Perelman's no local collapsing theorem, singularity analysis, and ancient solutions. A major direction in Ricci flow, via Hamilton's and Perelman's works, is the use of Ricci flow as an approach to solving the Poincaré conjecture and Thurston's geometrization conjecture.

Lectures on Hyperbolic Geometry

Lectures on Hyperbolic Geometry PDF Author: Riccardo Benedetti
Publisher: Springer Science & Business Media
ISBN: 3642581587
Category : Mathematics
Languages : en
Pages : 343

Get Book Here

Book Description
Focussing on the geometry of hyperbolic manifolds, the aim here is to provide an exposition of some fundamental results, while being as self-contained, complete, detailed and unified as possible. Following some classical material on the hyperbolic space and the Teichmüller space, the book centers on the two fundamental results: Mostow's rigidity theorem (including a complete proof, following Gromov and Thurston) and Margulis' lemma. These then form the basis for studying Chabauty and geometric topology; a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory; and much space is devoted to the 3D case: a complete and elementary proof of the hyperbolic surgery theorem, based on the representation of three manifolds as glued ideal tetrahedra.

Sobolev Spaces on Riemannian Manifolds

Sobolev Spaces on Riemannian Manifolds PDF Author: Emmanuel Hebey
Publisher: Springer
ISBN: 3540699937
Category : Mathematics
Languages : en
Pages : 126

Get Book Here

Book Description
Several books deal with Sobolev spaces on open subsets of R (n), but none yet with Sobolev spaces on Riemannian manifolds, despite the fact that the theory of Sobolev spaces on Riemannian manifolds already goes back about 20 years. The book of Emmanuel Hebey will fill this gap, and become a necessary reading for all using Sobolev spaces on Riemannian manifolds. Hebey's presentation is very detailed, and includes the most recent developments due mainly to the author himself and to Hebey-Vaugon. He makes numerous things more precise, and discusses the hypotheses to test whether they can be weakened, and also presents new results.