Author: Hector Zenil
Publisher: Springer Science & Business Media
ISBN: 3642354823
Category : Technology & Engineering
Languages : en
Pages : 354
Book Description
It is clear that computation is playing an increasingly prominent role in the development of mathematics, as well as in the natural and social sciences. The work of Stephen Wolfram over the last several decades has been a salient part in this phenomenon helping founding the field of Complex Systems, with many of his constructs and ideas incorporated in his book A New Kind of Science (ANKS) becoming part of the scientific discourse and general academic knowledge--from the now established Elementary Cellular Automata to the unconventional concept of mining the Computational Universe, from today's widespread Wolfram's Behavioural Classification to his principles of Irreducibility and Computational Equivalence. This volume, with a Foreword by Gregory Chaitin and an Afterword by Cris Calude, covers these and other topics related to or motivated by Wolfram's seminal ideas, reporting on research undertaken in the decade following the publication of Wolfram's NKS book. Featuring 39 authors, its 23 contributions are organized into seven parts: Mechanisms in Programs & Nature Systems Based on Numbers & Simple Programs Social and Biological Systems & Technology Fundamental Physics The Behavior of Systems & the Notion of Computation Irreducibility & Computational Equivalence Reflections and Philosophical Implications.
Irreducibility and Computational Equivalence
A New Kind of Science
Author: Stephen Wolfram
Publisher:
ISBN: 9780713991161
Category : Cellular automata
Languages : en
Pages : 1197
Book Description
This work presents a series of dramatic discoveries never before made public. Starting from a collection of simple computer experiments---illustrated in the book by striking computer graphics---Wolfram shows how their unexpected results force a whole new way of looking at the operation of our universe. Wolfram uses his approach to tackle a remarkable array of fundamental problems in science: from the origin of the Second Law of thermodynamics, to the development of complexity in biology, the computational limitations of mathematics, the possibility of a truly fundamental theory of physics, and the interplay between free will and determinism.
Publisher:
ISBN: 9780713991161
Category : Cellular automata
Languages : en
Pages : 1197
Book Description
This work presents a series of dramatic discoveries never before made public. Starting from a collection of simple computer experiments---illustrated in the book by striking computer graphics---Wolfram shows how their unexpected results force a whole new way of looking at the operation of our universe. Wolfram uses his approach to tackle a remarkable array of fundamental problems in science: from the origin of the Second Law of thermodynamics, to the development of complexity in biology, the computational limitations of mathematics, the possibility of a truly fundamental theory of physics, and the interplay between free will and determinism.
Symmetry And Complexity: The Spirit And Beauty Of Nonlinear Science
Author: Klaus Mainzer
Publisher: World Scientific
ISBN: 9814480819
Category : Science
Languages : en
Pages : 448
Book Description
Cosmic evolution leads from symmetry to complexity by symmetry breaking and phase transitions. The emergence of new order and structure in nature and society is explained by physical, chemical, biological, social and economic self-organization, according to the laws of nonlinear dynamics. All these dynamical systems are considered computational systems processing information and entropy. Are symmetry and complexity only useful models of science or are they universals of reality? Symmetry and Complexity discusses the fascinating insights gained from natural, social and computer sciences, philosophy and the arts. With many diagrams and pictures, this book illustrates the spirit and beauty of nonlinear science. In the complex world of globalization, it strongly argues for unity in diversity.
Publisher: World Scientific
ISBN: 9814480819
Category : Science
Languages : en
Pages : 448
Book Description
Cosmic evolution leads from symmetry to complexity by symmetry breaking and phase transitions. The emergence of new order and structure in nature and society is explained by physical, chemical, biological, social and economic self-organization, according to the laws of nonlinear dynamics. All these dynamical systems are considered computational systems processing information and entropy. Are symmetry and complexity only useful models of science or are they universals of reality? Symmetry and Complexity discusses the fascinating insights gained from natural, social and computer sciences, philosophy and the arts. With many diagrams and pictures, this book illustrates the spirit and beauty of nonlinear science. In the complex world of globalization, it strongly argues for unity in diversity.
A Project to Find the Fundamental Theory of Physics
Author: Stephen Wolfram
Publisher: Wolfram Media
ISBN: 9781579550356
Category : Science
Languages : en
Pages : 0
Book Description
The Wolfram Physics Project is a bold effort to find the fundamental theory of physics. It combines new ideas with the latest research in physics, mathematics and computation in the push to achieve this ultimate goal of science. Written with Stephen Wolfram's characteristic expository flair, this book provides a unique opportunity to learn about a historic initiative in science right as it is happening. A Project to Find the Fundamental Theory of Physics includes an accessible introduction to the project as well as core technical exposition and rich, never-before-seen visualizations.
Publisher: Wolfram Media
ISBN: 9781579550356
Category : Science
Languages : en
Pages : 0
Book Description
The Wolfram Physics Project is a bold effort to find the fundamental theory of physics. It combines new ideas with the latest research in physics, mathematics and computation in the push to achieve this ultimate goal of science. Written with Stephen Wolfram's characteristic expository flair, this book provides a unique opportunity to learn about a historic initiative in science right as it is happening. A Project to Find the Fundamental Theory of Physics includes an accessible introduction to the project as well as core technical exposition and rich, never-before-seen visualizations.
Partial Derivatives in Arithmetic Complexity and Beyond
Author: Xi Chen
Publisher: Now Publishers Inc
ISBN: 1601984804
Category : Computers
Languages : en
Pages : 157
Book Description
Partial Derivatives in Arithmetic Complexity and Beyond is devoted mainly to the study of polynomials from a computational perspective. The main point of this book is that one can learn a great deal about the structure and complexity of polynomials by studying (some of) their partial derivatives.
Publisher: Now Publishers Inc
ISBN: 1601984804
Category : Computers
Languages : en
Pages : 157
Book Description
Partial Derivatives in Arithmetic Complexity and Beyond is devoted mainly to the study of polynomials from a computational perspective. The main point of this book is that one can learn a great deal about the structure and complexity of polynomials by studying (some of) their partial derivatives.
Turing Computability
Author: Robert I. Soare
Publisher: Springer
ISBN: 3642319335
Category : Computers
Languages : en
Pages : 289
Book Description
Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.
Publisher: Springer
ISBN: 3642319335
Category : Computers
Languages : en
Pages : 289
Book Description
Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.
Computational Algebraic Geometry
Author: Hal Schenck
Publisher: Cambridge University Press
ISBN: 9780521536509
Category : Computers
Languages : en
Pages : 212
Book Description
The interplay between algebra and geometry is a beautiful (and fun!) area of mathematical investigation. Advances in computing and algorithms make it possible to tackle many classical problems in a down-to-earth and concrete fashion. This opens wonderful new vistas and allows us to pose, study and solve problems that were previously out of reach. Suitable for graduate students, the objective of this 2003 book is to bring advanced algebra to life with lots of examples. The first chapters provide an introduction to commutative algebra and connections to geometry. The rest of the book focuses on three active areas of contemporary algebra: Homological Algebra (the snake lemma, long exact sequence inhomology, functors and derived functors (Tor and Ext), and double complexes); Algebraic Combinatorics and Algebraic Topology (simplicial complexes and simplicial homology, Stanley-Reisner rings, upper bound theorem and polytopes); and Algebraic Geometry (points and curves in projective space, Riemann-Roch, Cech cohomology, regularity).
Publisher: Cambridge University Press
ISBN: 9780521536509
Category : Computers
Languages : en
Pages : 212
Book Description
The interplay between algebra and geometry is a beautiful (and fun!) area of mathematical investigation. Advances in computing and algorithms make it possible to tackle many classical problems in a down-to-earth and concrete fashion. This opens wonderful new vistas and allows us to pose, study and solve problems that were previously out of reach. Suitable for graduate students, the objective of this 2003 book is to bring advanced algebra to life with lots of examples. The first chapters provide an introduction to commutative algebra and connections to geometry. The rest of the book focuses on three active areas of contemporary algebra: Homological Algebra (the snake lemma, long exact sequence inhomology, functors and derived functors (Tor and Ext), and double complexes); Algebraic Combinatorics and Algebraic Topology (simplicial complexes and simplicial homology, Stanley-Reisner rings, upper bound theorem and polytopes); and Algebraic Geometry (points and curves in projective space, Riemann-Roch, Cech cohomology, regularity).
Integral Closure of Ideals, Rings, and Modules
Author: Craig Huneke
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446
Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446
Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
The Cellular Automaton Interpretation of Quantum Mechanics
Author: Gerard 't Hooft
Publisher: Springer
ISBN: 331941285X
Category : Science
Languages : en
Pages : 296
Book Description
This book presents the deterministic view of quantum mechanics developed by Nobel Laureate Gerard 't Hooft. Dissatisfied with the uncomfortable gaps in the way conventional quantum mechanics meshes with the classical world, 't Hooft has revived the old hidden variable ideas, but now in a much more systematic way than usual. In this, quantum mechanics is viewed as a tool rather than a theory. The author gives examples of models that are classical in essence, but can be analysed by the use of quantum techniques, and argues that even the Standard Model, together with gravitational interactions, might be viewed as a quantum mechanical approach to analysing a system that could be classical at its core. He shows how this approach, even though it is based on hidden variables, can be plausibly reconciled with Bell's theorem, and how the usual objections voiced against the idea of ‘superdeterminism' can be overcome, at least in principle. This framework elegantly explains - and automatically cures - the problems of the wave function collapse and the measurement problem. Even the existence of an “arrow of time" can perhaps be explained in a more elegant way than usual. As well as reviewing the author’s earlier work in the field, the book also contains many new observations and calculations. It provides stimulating reading for all physicists working on the foundations of quantum theory.
Publisher: Springer
ISBN: 331941285X
Category : Science
Languages : en
Pages : 296
Book Description
This book presents the deterministic view of quantum mechanics developed by Nobel Laureate Gerard 't Hooft. Dissatisfied with the uncomfortable gaps in the way conventional quantum mechanics meshes with the classical world, 't Hooft has revived the old hidden variable ideas, but now in a much more systematic way than usual. In this, quantum mechanics is viewed as a tool rather than a theory. The author gives examples of models that are classical in essence, but can be analysed by the use of quantum techniques, and argues that even the Standard Model, together with gravitational interactions, might be viewed as a quantum mechanical approach to analysing a system that could be classical at its core. He shows how this approach, even though it is based on hidden variables, can be plausibly reconciled with Bell's theorem, and how the usual objections voiced against the idea of ‘superdeterminism' can be overcome, at least in principle. This framework elegantly explains - and automatically cures - the problems of the wave function collapse and the measurement problem. Even the existence of an “arrow of time" can perhaps be explained in a more elegant way than usual. As well as reviewing the author’s earlier work in the field, the book also contains many new observations and calculations. It provides stimulating reading for all physicists working on the foundations of quantum theory.
Modular Forms, a Computational Approach
Author: William A. Stein
Publisher: American Mathematical Soc.
ISBN: 0821839608
Category : Mathematics
Languages : en
Pages : 290
Book Description
This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.
Publisher: American Mathematical Soc.
ISBN: 0821839608
Category : Mathematics
Languages : en
Pages : 290
Book Description
This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.