Author: Ivan Yashchenko
Publisher: American Mathematical Soc.
ISBN: 0821869051
Category : Education
Languages : en
Pages : 195
Book Description
Held annually in Moscow since 1990, the Mathematical Festival is a brilliant and fascinating math competition attended by hundreds of middle school students. This contains problems presented at the Festival during the years 1990-2011, along with hints and solutions for many of them. Most of the problems are accessible to students with no additional training in mathematics and may be used as supplementary material at school or at home.
Invitation to a Mathematical Festival
Author: Ivan Yashchenko
Publisher: American Mathematical Soc.
ISBN: 0821869051
Category : Education
Languages : en
Pages : 195
Book Description
Held annually in Moscow since 1990, the Mathematical Festival is a brilliant and fascinating math competition attended by hundreds of middle school students. This contains problems presented at the Festival during the years 1990-2011, along with hints and solutions for many of them. Most of the problems are accessible to students with no additional training in mathematics and may be used as supplementary material at school or at home.
Publisher: American Mathematical Soc.
ISBN: 0821869051
Category : Education
Languages : en
Pages : 195
Book Description
Held annually in Moscow since 1990, the Mathematical Festival is a brilliant and fascinating math competition attended by hundreds of middle school students. This contains problems presented at the Festival during the years 1990-2011, along with hints and solutions for many of them. Most of the problems are accessible to students with no additional training in mathematics and may be used as supplementary material at school or at home.
Invitation to Mathematics. Grade 8
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Mathematics Teacher Resource Handbook
Author:
Publisher: Krause Publications
ISBN:
Category : Mathematics
Languages : en
Pages : 472
Book Description
Publisher: Krause Publications
ISBN:
Category : Mathematics
Languages : en
Pages : 472
Book Description
An Invitation to Arithmetic Geometry
Author: Dino Lorenzini
Publisher: American Mathematical Society
ISBN: 1470467259
Category : Mathematics
Languages : en
Pages : 397
Book Description
Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.
Publisher: American Mathematical Society
ISBN: 1470467259
Category : Mathematics
Languages : en
Pages : 397
Book Description
Extremely carefully written, masterfully thought out, and skillfully arranged introduction … to the arithmetic of algebraic curves, on the one hand, and to the algebro-geometric aspects of number theory, on the other hand. … an excellent guide for beginners in arithmetic geometry, just as an interesting reference and methodical inspiration for teachers of the subject … a highly welcome addition to the existing literature. —Zentralblatt MATH The interaction between number theory and algebraic geometry has been especially fruitful. In this volume, the author gives a unified presentation of some of the basic tools and concepts in number theory, commutative algebra, and algebraic geometry, and for the first time in a book at this level, brings out the deep analogies between them. The geometric viewpoint is stressed throughout the book. Extensive examples are given to illustrate each new concept, and many interesting exercises are given at the end of each chapter. Most of the important results in the one-dimensional case are proved, including Bombieri's proof of the Riemann Hypothesis for curves over a finite field. While the book is not intended to be an introduction to schemes, the author indicates how many of the geometric notions introduced in the book relate to schemes, which will aid the reader who goes to the next level of this rich subject.
Powerful Problem Solving
Author: Max Ray
Publisher: Heinemann Educational Books
ISBN: 9780325050904
Category : Education
Languages : en
Pages : 0
Book Description
How can we break the cycle of frustrated students who "drop out of math" because the procedures just don't make sense to them? Or who memorize the procedures for the test but don't really understand the mathematics? Max Ray-Riek and his colleagues at the Math Forum @ Drexel University say "problem solved," by offering their collective wisdom about how students become proficient problem solvers, through the lens of the CCSS for Mathematical Practices. They unpack the process of problem solving in fresh new ways and turn the Practices into activities that teachers can use to foster habits of mind required by the Common Core: communicating ideas and listening to the reflections of others estimating and reasoning to see the "big picture" of a problem organizing information to promote problem solving using modeling and representations to visualize abstract concepts reflecting on, revising, justifying, and extending the work. Powerful Problem Solving shows what's possible when students become active doers rather than passive consumers of mathematics. Max argues that the process of sense-making truly begins when we create questioning, curious classrooms full of students' own thoughts and ideas. By asking "What do you notice? What do you wonder?" we give students opportunities to see problems in big-picture ways, and discover multiple strategies for tackling a problem. Self-confidence, reflective skills, and engagement soar, and students discover that the goal is not to be "over and done," but to realize the many different ways to approach problems. Read a sample chapter.
Publisher: Heinemann Educational Books
ISBN: 9780325050904
Category : Education
Languages : en
Pages : 0
Book Description
How can we break the cycle of frustrated students who "drop out of math" because the procedures just don't make sense to them? Or who memorize the procedures for the test but don't really understand the mathematics? Max Ray-Riek and his colleagues at the Math Forum @ Drexel University say "problem solved," by offering their collective wisdom about how students become proficient problem solvers, through the lens of the CCSS for Mathematical Practices. They unpack the process of problem solving in fresh new ways and turn the Practices into activities that teachers can use to foster habits of mind required by the Common Core: communicating ideas and listening to the reflections of others estimating and reasoning to see the "big picture" of a problem organizing information to promote problem solving using modeling and representations to visualize abstract concepts reflecting on, revising, justifying, and extending the work. Powerful Problem Solving shows what's possible when students become active doers rather than passive consumers of mathematics. Max argues that the process of sense-making truly begins when we create questioning, curious classrooms full of students' own thoughts and ideas. By asking "What do you notice? What do you wonder?" we give students opportunities to see problems in big-picture ways, and discover multiple strategies for tackling a problem. Self-confidence, reflective skills, and engagement soar, and students discover that the goal is not to be "over and done," but to realize the many different ways to approach problems. Read a sample chapter.
Mathematize It! [Grades 6-8]
Author: Kimberly Morrow-Leong
Publisher: Corwin Press
ISBN: 1071819879
Category : Education
Languages : en
Pages : 265
Book Description
Help students reveal the math behind the words "I don’t get what I’m supposed to do!" This is a common refrain from students when asked to solve word problems. Solving problems is about more than computation. Students must understand the mathematics of a situation to know what computation will lead to an appropriate solution. Many students often pluck numbers from the problem and plug them into an equation using the first operation they can think of (or the last one they practiced). Students also tend to choose an operation by solely relying on key words that they believe will help them arrive at an answer, without careful consideration of what the problem is actually asking of them. Mathematize It! Going Beyond Key Words to Make Sense of Word Problems, Grades 6–8 shares a reasoning approach that helps students dig into the problem to uncover the underlying mathematics, deeply consider the problem’s context, and employ strong operation sense to solve it. Through the process of mathematizing, the authors provide an explanation of a consistent method—and specific instructional strategies—to take the initial focus off specific numbers and computations and put it on the actions and relationships expressed in the problem. Sure to enhance teachers’ own operation sense, this user-friendly resource for Grades 6–8: · Offers a systematic mathematizing process for students to use when solving word problems · Gives practice opportunities and dozens of problems to leverage in the classroom · Provides specific examples of questions and explorations for multiplication and division, fractions and decimals, as well as operations with rational numbers · Demonstrates the use of visual representations to model problems with dozens of short videos · Includes end-of-chapter activities and reflection questions How can you help your students understand what is happening mathematically when solving word problems? Mathematize it!
Publisher: Corwin Press
ISBN: 1071819879
Category : Education
Languages : en
Pages : 265
Book Description
Help students reveal the math behind the words "I don’t get what I’m supposed to do!" This is a common refrain from students when asked to solve word problems. Solving problems is about more than computation. Students must understand the mathematics of a situation to know what computation will lead to an appropriate solution. Many students often pluck numbers from the problem and plug them into an equation using the first operation they can think of (or the last one they practiced). Students also tend to choose an operation by solely relying on key words that they believe will help them arrive at an answer, without careful consideration of what the problem is actually asking of them. Mathematize It! Going Beyond Key Words to Make Sense of Word Problems, Grades 6–8 shares a reasoning approach that helps students dig into the problem to uncover the underlying mathematics, deeply consider the problem’s context, and employ strong operation sense to solve it. Through the process of mathematizing, the authors provide an explanation of a consistent method—and specific instructional strategies—to take the initial focus off specific numbers and computations and put it on the actions and relationships expressed in the problem. Sure to enhance teachers’ own operation sense, this user-friendly resource for Grades 6–8: · Offers a systematic mathematizing process for students to use when solving word problems · Gives practice opportunities and dozens of problems to leverage in the classroom · Provides specific examples of questions and explorations for multiplication and division, fractions and decimals, as well as operations with rational numbers · Demonstrates the use of visual representations to model problems with dozens of short videos · Includes end-of-chapter activities and reflection questions How can you help your students understand what is happening mathematically when solving word problems? Mathematize it!
Recording for the Blind & Dyslexic, ... Catalog of Books
Author:
Publisher:
ISBN:
Category : Blind
Languages : en
Pages : 380
Book Description
Publisher:
ISBN:
Category : Blind
Languages : en
Pages : 380
Book Description
Elementary and Secondary Education for Science and Engineering
Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 158
Book Description
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 158
Book Description
Strengths-Based Teaching and Learning in Mathematics
Author: Beth McCord Kobett
Publisher: Corwin
ISBN: 1544374909
Category : Education
Languages : en
Pages : 273
Book Description
"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.
Publisher: Corwin
ISBN: 1544374909
Category : Education
Languages : en
Pages : 273
Book Description
"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.
Additive Combinatorics
Author: Bela Bajnok
Publisher: CRC Press
ISBN: 1351137611
Category : Mathematics
Languages : en
Pages : 411
Book Description
Additive Combinatorics: A Menu of Research Problems is the first book of its kind to provide readers with an opportunity to actively explore the relatively new field of additive combinatorics. The author has written the book specifically for students of any background and proficiency level, from beginners to advanced researchers. It features an extensive menu of research projects that are challenging and engaging at many different levels. The questions are new and unsolved, incrementally attainable, and designed to be approachable with various methods. The book is divided into five parts which are compared to a meal. The first part is called Ingredients and includes relevant background information about number theory, combinatorics, and group theory. The second part, Appetizers, introduces readers to the book’s main subject through samples. The third part, Sides, covers auxiliary functions that appear throughout different chapters. The book’s main course, so to speak, is Entrees: it thoroughly investigates a large variety of questions in additive combinatorics by discussing what is already known about them and what remains unsolved. These include maximum and minimum sumset size, spanning sets, critical numbers, and so on. The final part is Pudding and features numerous proofs and results, many of which have never been published. Features: The first book of its kind to explore the subject Students of any level can use the book as the basis for research projects The text moves gradually through five distinct parts, which is suitable both for beginners without prerequisites and for more advanced students Includes extensive proofs of propositions and theorems Each of the introductory chapters contains numerous exercises to help readers
Publisher: CRC Press
ISBN: 1351137611
Category : Mathematics
Languages : en
Pages : 411
Book Description
Additive Combinatorics: A Menu of Research Problems is the first book of its kind to provide readers with an opportunity to actively explore the relatively new field of additive combinatorics. The author has written the book specifically for students of any background and proficiency level, from beginners to advanced researchers. It features an extensive menu of research projects that are challenging and engaging at many different levels. The questions are new and unsolved, incrementally attainable, and designed to be approachable with various methods. The book is divided into five parts which are compared to a meal. The first part is called Ingredients and includes relevant background information about number theory, combinatorics, and group theory. The second part, Appetizers, introduces readers to the book’s main subject through samples. The third part, Sides, covers auxiliary functions that appear throughout different chapters. The book’s main course, so to speak, is Entrees: it thoroughly investigates a large variety of questions in additive combinatorics by discussing what is already known about them and what remains unsolved. These include maximum and minimum sumset size, spanning sets, critical numbers, and so on. The final part is Pudding and features numerous proofs and results, many of which have never been published. Features: The first book of its kind to explore the subject Students of any level can use the book as the basis for research projects The text moves gradually through five distinct parts, which is suitable both for beginners without prerequisites and for more advanced students Includes extensive proofs of propositions and theorems Each of the introductory chapters contains numerous exercises to help readers