Investigations on rf breakdown phenomenon in high gradient accelerating structures

Investigations on rf breakdown phenomenon in high gradient accelerating structures PDF Author: Jiahang Shao
Publisher: Springer
ISBN: 9811079269
Category : Science
Languages : en
Pages : 142

Get Book Here

Book Description
This book mainly focuses on the experimental research of rf breakdown and field emission with novel methods, including triggering rf breakdown with high intensity laser and pin-shaped cathodes as well as locating field emitters with a high resolution in-situ imaging system. With these methods, this book has analyzed the power flow between cells during rf breakdown, observed the evolution of field emission during rf conditioning and the dependence of field emission on stored energy, and studied the field emitter distribution and origination. The research findings greatly expand the understanding of rf breakdown and field emission, which will in turn benefit future study into electron sources, particle accelerators, and high gradient rf devices in general.

Investigations on rf breakdown phenomenon in high gradient accelerating structures

Investigations on rf breakdown phenomenon in high gradient accelerating structures PDF Author: Jiahang Shao
Publisher: Springer
ISBN: 9811079269
Category : Science
Languages : en
Pages : 142

Get Book Here

Book Description
This book mainly focuses on the experimental research of rf breakdown and field emission with novel methods, including triggering rf breakdown with high intensity laser and pin-shaped cathodes as well as locating field emitters with a high resolution in-situ imaging system. With these methods, this book has analyzed the power flow between cells during rf breakdown, observed the evolution of field emission during rf conditioning and the dependence of field emission on stored energy, and studied the field emitter distribution and origination. The research findings greatly expand the understanding of rf breakdown and field emission, which will in turn benefit future study into electron sources, particle accelerators, and high gradient rf devices in general.

Rf Breakdown Measurements in Electron Beam Driven 200 GHz Copper and Copper-silver Accelerating Structures

Rf Breakdown Measurements in Electron Beam Driven 200 GHz Copper and Copper-silver Accelerating Structures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10-2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.

High Gradient Accelerating Structure - Proceedings Of The Symposium On The Occasion Of 70th Birthday Of Junwen Wang

High Gradient Accelerating Structure - Proceedings Of The Symposium On The Occasion Of 70th Birthday Of Junwen Wang PDF Author: Wei Gai
Publisher: World Scientific
ISBN: 9814602116
Category : Science
Languages : en
Pages : 176

Get Book Here

Book Description
This proceedings volume, for the symposium in honor of Junwen Wang's 70th anniversary, is dedicated to his many important achievements in the field of accelerator physics.It includes the discussions of recent advances and challenging problems in the field of high gradient accelerating structure development.

High Precision X-Ray Measurements

High Precision X-Ray Measurements PDF Author: Alessandro Scordo
Publisher: MDPI
ISBN: 3039213172
Category : Science
Languages : en
Pages : 144

Get Book Here

Book Description
Since their discovery in 1895, the detection of X-rays has had a strong impact on and various applications in several fields of science and human life. Impressive efforts have been made to develop new types of detectors and new techniques, aiming to obtain higher precision both in terms of energy and position. Depending on the applications, solid state detectors, microcalorimeters, and various types of spectrometers currently serve as the best options for spectroscopic and imaging detectors. Recent advancements in micron and meV precision have opened the door for groundbreaking applications in fundamental physics, medical science, astrophysics, cultural heritage, and several other fields. The aim of this Special Issue is to compile an overview, from different communities and research fields, of the most recent developments in X-ray detection and their possible impacts in various sectors, such as in exotic atom measurements, quantum physics studies, XRF, XES, EXAFS, plasma emission spectroscopy, monochromators, synchrotron radiation, telescopes, and space engineering. All the papers included in this Special Issue contribute to emphasizing the importance of X-ray detection in a very broad range of physics topics; most of these topics are covered by the published works, and several others are mentioned in the paper references, providing an interesting and very useful synopsis, from a variety of different communities and research fields, of the most recent developments in X-ray detection and their impact in fundamental research and societal applications.

High Gradient Accelerator Research

High Gradient Accelerator Research PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

A Dual-Moded Cavity for RF Breakdown Studies

A Dual-Moded Cavity for RF Breakdown Studies PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The phenomenon of rf breakdown presents a technological limitation in the application of high-gradient particle acceleration in normal conducting rf structures. Attempts to understand the onset of this phenomenon and to study its limits with different materials, cell shapes, and pulse widths has been driven in recent years by linear collider development. One question of interest is the role magnetic field plays relative to electric field. A design is presented for a single, nonaccelerating, rf cavity resonant in two modes, which, driven independently, allow the rf magnetic field to be increased on the region of highest electric field without affecting the latter. The design allows for the potential reuse of the cavity with different samples in the high-field region. High power data is not yet available.

EPAC 90

EPAC 90 PDF Author: P. Marin
Publisher: Atlantica Séguier Frontières
ISBN: 9782863320907
Category : Particle accelerators
Languages : en
Pages : 1054

Get Book Here

Book Description


CERN.

CERN. PDF Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 522

Get Book Here

Book Description


Ultra-High Accelerating Gradients in Radio-Frequency Cryogenic Copper Structures

Ultra-High Accelerating Gradients in Radio-Frequency Cryogenic Copper Structures PDF Author: Alexander Cahill
Publisher:
ISBN:
Category :
Languages : en
Pages : 221

Get Book Here

Book Description
Normal conducting radio-frequency (rf) particle accelerators have many applications, including colliders for high energy physics, high-intensity synchrotron light sources, non-destructive testing for security, and medical radiation therapy. In these applications, the accelerating gradient is an important parameter. Specifically for high energy physics, increasing the accelerating gradient extends the potential energy reach and is viewed as a way to mitigate their considerable cost. Furthermore, a gradient increase will enable for more compact and thus accessible free electron lasers (FELs). The major factor limiting larger accelerating gradients is vacuum rf breakdown. Basic physics of this phenomenon has been extensively studied over the last few decades. During which, the occurrence of rf breakdowns was shown to be probabilistic, and can be characterized by a breakdown rate. The current consensus is that vacuum rf breakdowns are caused by movements of crystal defects induced by periodic mechanical stress. The stress may be caused by pulsed surface heating and large electric fields. A compelling piece of evidence that supports this hypothesis is that accelerating structures constructed from harder materials exhibit larger accelerating gradients for similar breakdown rates. One possible method to increase sustained electric fields in copper cavities is to cool them to temperatures below 77~K, where the rf surface resistance and coefficient of thermal expansion decrease, while the yield strength (which correlates with hardness) and thermal conductivity increase. These changes in material properties at low temperature increases metal hardness and decreases the mechanical stress from exposure to rf electromagnetic fields. To test the validity of the improvement in breakdown rate, experiments were conducted with cryogenic accelerating cavities in the Accelerator Structure Test Area (ASTA) at SLAC National Accelerator Laboratory. A short 11.4~GHz standing wave accelerating structure was conditioned to an accelerating gradient of 250~MV/m at 45~K with $10^8$ rf pulses. At gradients greater than 150~MV/m I observed a degradation in the intrinsic quality factor of the cavity, $Q_0$. I developed a model for the change in $Q_0$ using measured field emission currents and rf signals. I found that the $Q_0$ degradation is consistent with the rf power being absorbed by strong field emission currents accelerated inside the cavity. I measured rf breakdown rates for 45~K and found $2*10^{-4}/pulse/meter$ when accounting for any change in $Q_0$. These are the largest accelerating gradients for a structure with similar breakdown rates. The final chapter presents the design of an rf photoinjector electron source that uses the cryogenic normal conducting accelerator technology: the TOPGUN. With this cryogenic rf photoinjector, the beam brightness will increase by over an order of a magnitude when compared to the current photoinjector for the Linac Coherent Light Source (LCLS). When using the TOPGUN as the source for an X-ray Free Electron Laser, the higher brightness would allow for a decrease in the required length of the LCLS undulator by more than a factor of two.

Proceedings of the XVIII International Linear Accelerator Conference

Proceedings of the XVIII International Linear Accelerator Conference PDF Author: C. Hill
Publisher:
ISBN:
Category : Linear accelerators
Languages : en
Pages : 518

Get Book Here

Book Description