Investigations in Algebraic Theory of Combinatorial Objects

Investigations in Algebraic Theory of Combinatorial Objects PDF Author: I.A. Faradzev
Publisher: Springer Science & Business Media
ISBN: 9401719721
Category : Mathematics
Languages : en
Pages : 513

Get Book Here

Book Description
X Köchendorffer, L.A. Kalu:lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of "sports-like" results were obtained. Some of these results are still unsurpassed.

Investigations in Algebraic Theory of Combinatorial Objects

Investigations in Algebraic Theory of Combinatorial Objects PDF Author: I.A. Faradzev
Publisher: Springer Science & Business Media
ISBN: 9401719721
Category : Mathematics
Languages : en
Pages : 513

Get Book Here

Book Description
X Köchendorffer, L.A. Kalu:lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of "sports-like" results were obtained. Some of these results are still unsurpassed.

Investigations in Algebraic Theory of Combinatorial Objects

Investigations in Algebraic Theory of Combinatorial Objects PDF Author: I.A. Faradzev
Publisher: Springer Science & Business Media
ISBN: 9780792319276
Category : Mathematics
Languages : en
Pages : 534

Get Book Here

Book Description
X Köchendorffer, L.A. Kalu:lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of "sports-like" results were obtained. Some of these results are still unsurpassed.

Isomorphisms, Symmetry and Computations in Algebraic Graph Theory

Isomorphisms, Symmetry and Computations in Algebraic Graph Theory PDF Author: Gareth A. Jones
Publisher: Springer Nature
ISBN: 3030328082
Category : Mathematics
Languages : en
Pages : 239

Get Book Here

Book Description
This book consists of a selection of peer-reviewed contributions to the Workshop on Algebraic Graph Theory that took place in Pilsen, Czech Republic in October 2016. Primarily intended for early career researchers, it presents eight self-contained articles on a selection of topics within algebraic combinatorics, ranging from association schemes to symmetries of graphs and isomorphism testing. Algebraic combinatorics is a compelling mathematical discipline based on the powerful interplay of algebraic and combinatorial methods. Algebraic interpretation of combinatorial structures (such as symmetry or regularity) has often led to enlightening discoveries and powerful results, while discrete and combinatorial structures have given rise to new algebraic structures that have found valuable applications. In addition to these original research contributions, the reader will find a survey linking numerous threads in algebraic combinatorics, and an extensive tutorial showcasing the universality of algebraic methods in the study of combinatorial structures.

Mathematics in Berlin

Mathematics in Berlin PDF Author: Heinrich Begehr
Publisher: Springer Science & Business Media
ISBN: 9783764359430
Category : Mathematics
Languages : en
Pages : 1840

Get Book Here

Book Description
This little book is conceived as a service to mathematicians attending the 1998 International Congress of Mathematicians in Berlin. It presents a comprehensive, condensed overview of mathematical activity in Berlin, from Leibniz almost to the present day (without, however, including biographies of living mathematicians). Since many towering figures in mathematical history worked in Berlin, most of the chapters of this book are concise biographies. These are held together by a few survey articles presenting the overall development of entire periods of scientific life at Berlin. Overlaps between various chapters and differences in style between the chap ters were inevitable, but sometimes this provided opportunities to show different aspects of a single historical event - for instance, the Kronecker-Weierstrass con troversy. The book aims at readability rather than scholarly completeness. There are no footnotes, only references to the individual bibliographies of each chapter. Still, we do hope that the texts brought together here, and written by the various authors for this volume, constitute a solid introduction to the history of Berlin mathematics.

Distance-Regular Graphs

Distance-Regular Graphs PDF Author: Andries E. Brouwer
Publisher: Springer Science & Business Media
ISBN: 3642743412
Category : Mathematics
Languages : en
Pages : 513

Get Book Here

Book Description
Ever since the discovery of the five platonic solids in ancient times, the study of symmetry and regularity has been one of the most fascinating aspects of mathematics. Quite often the arithmetical regularity properties of an object imply its uniqueness and the existence of many symmetries. This interplay between regularity and symmetry properties of graphs is the theme of this book. Starting from very elementary regularity properties, the concept of a distance-regular graph arises naturally as a common setting for regular graphs which are extremal in one sense or another. Several other important regular combinatorial structures are then shown to be equivalent to special families of distance-regular graphs. Other subjects of more general interest, such as regularity and extremal properties in graphs, association schemes, representations of graphs in euclidean space, groups and geometries of Lie type, groups acting on graphs, and codes are covered independently. Many new results and proofs and more than 750 references increase the encyclopaedic value of this book.

Symmetry in Graphs

Symmetry in Graphs PDF Author: Ted Dobson
Publisher: Cambridge University Press
ISBN: 1108643620
Category : Mathematics
Languages : en
Pages : 528

Get Book Here

Book Description
This is the first full-length book on the major theme of symmetry in graphs. Forming part of algebraic graph theory, this fast-growing field is concerned with the study of highly symmetric graphs, particularly vertex-transitive graphs, and other combinatorial structures, primarily by group-theoretic techniques. In practice the street goes both ways and these investigations shed new light on permutation groups and related algebraic structures. The book assumes a first course in graph theory and group theory but no specialized knowledge of the theory of permutation groups or vertex-transitive graphs. It begins with the basic material before introducing the field's major problems and most active research themes in order to motivate the detailed discussion of individual topics that follows. Featuring many examples and over 450 exercises, it is an essential introduction to the field for graduate students and a valuable addition to any algebraic graph theorist's bookshelf.

Graph Symmetry

Graph Symmetry PDF Author: Gena Hahn
Publisher: Springer Science & Business Media
ISBN: 9401589372
Category : Mathematics
Languages : en
Pages : 434

Get Book Here

Book Description
The last decade has seen two parallel developments, one in computer science, the other in mathematics, both dealing with the same kind of combinatorial structures: networks with strong symmetry properties or, in graph-theoretical language, vertex-transitive graphs, in particular their prototypical examples, Cayley graphs. In the design of large interconnection networks it was realised that many of the most fre quently used models for such networks are Cayley graphs of various well-known groups. This has spawned a considerable amount of activity in the study of the combinatorial properties of such graphs. A number of symposia and congresses (such as the bi-annual IWIN, starting in 1991) bear witness to the interest of the computer science community in this subject. On the mathematical side, and independently of any interest in applications, progress in group theory has made it possible to make a realistic attempt at a complete description of vertex-transitive graphs. The classification of the finite simple groups has played an important role in this respect.

Handbook of Combinatorics

Handbook of Combinatorics PDF Author: R.L. Graham
Publisher: Elsevier
ISBN: 008093384X
Category : Computers
Languages : en
Pages : 2404

Get Book Here

Book Description
Handbook of Combinatorics

Combinatorial Design Theory

Combinatorial Design Theory PDF Author: C.J. Colbourn
Publisher: Elsevier
ISBN: 0080872603
Category : Mathematics
Languages : en
Pages : 483

Get Book Here

Book Description
Combinatorial design theory is a vibrant area of combinatorics, connecting graph theory, number theory, geometry, and algebra with applications in experimental design, coding theory, and numerous applications in computer science.This volume is a collection of forty-one state-of-the-art research articles spanning all of combinatorial design theory. The articles develop new methods for the construction and analysis of designs and related combinatorial configurations; both new theoretical methods, and new computational tools and results, are presented. In particular, they extend the current state of knowledge on Steiner systems, Latin squares, one-factorizations, block designs, graph designs, packings and coverings, and develop recursive and direct constructions.The contributions form an overview of the current diversity of themes in design theory for those peripherally interested, while researchers in the field will find it to be a major collection of research advances. The volume is dedicated to Alex Rosa, who has played a major role in fostering and developing combinatorial design theory.

Surveys in Combinatorics, 1997

Surveys in Combinatorics, 1997 PDF Author: Rosemary Bailey
Publisher: Cambridge University Press
ISBN: 0521598400
Category : Analyse combinatoire
Languages : en
Pages : 356

Get Book Here

Book Description
The invited lectures given at the 16th. British Combinatorial Conference, July 1997 at Queen Mary and Westfield College.