Investigation of Diesel-ethanol and Diesel-gasoline Dual Fuel Combustion in a Single Cylinder Optical Diesel Engine

Investigation of Diesel-ethanol and Diesel-gasoline Dual Fuel Combustion in a Single Cylinder Optical Diesel Engine PDF Author: Mahmoudreza Mirmohammadsadeghi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Investigation of Diesel-ethanol and Diesel-gasoline Dual Fuel Combustion in a Single Cylinder Optical Diesel Engine

Investigation of Diesel-ethanol and Diesel-gasoline Dual Fuel Combustion in a Single Cylinder Optical Diesel Engine PDF Author: Mahmoudreza Mirmohammadsadeghi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Optical Investigation of Diesel and Natural Gas Dual-fuel Combustion

Optical Investigation of Diesel and Natural Gas Dual-fuel Combustion PDF Author: Keith R. Dahl
Publisher:
ISBN:
Category :
Languages : en
Pages : 512

Get Book Here

Book Description


Dual-Fuel Diesel Engines

Dual-Fuel Diesel Engines PDF Author: Ghazi A. Karim
Publisher: CRC Press
ISBN: 1498703097
Category : Technology & Engineering
Languages : en
Pages : 312

Get Book Here

Book Description
Dual-Fuel Diesel Engines offers a detailed discussion of different types of dual-fuel diesel engines, the gaseous fuels they can use, and their operational practices. Reflecting cutting-edge advancements in this rapidly expanding field, this timely book:Explains the benefits and challenges associated with internal combustion, compression ignition,

Investigation of the Performance and Emissions Characteristics of Dual Fuel Combustion in a Single Cylinder IDI Diesel Engine

Investigation of the Performance and Emissions Characteristics of Dual Fuel Combustion in a Single Cylinder IDI Diesel Engine PDF Author: Johnnie L. Williams (Jr.)
Publisher:
ISBN:
Category : Diesel motor exhaust gas
Languages : en
Pages : 136

Get Book Here

Book Description
Author's Abstract: Restrictions in the allowable exhaust gas emissions of diesel engines has become a driving factor in the design, development, and implementation of internal combustion (IC) engines. A dual fuel research engine concept was developed and implemented in an indirect injected engine in order to research combustion characteristics and emissions for non-road applications. The experimental engine was operated at a constant speed and load 2400 rpm and 5.5 bar indicated mean effective pressure (IMEP). n-Butanol was port fuel injected at 10%, 20%, 30%, and 40% by mass fraction with neat ultra-low sulfur diesel (ULSD#2). Peak pressure, maximum pressure rise rates, and heat release rates all increased with the increasing concentration of n-Butanol. MPRR increased by 127% and AHRR increased by 30.5% as a result of the shorter ignition delay and combustion duration. Ignition delay and combustion duration were reduced by 3.6% and 31.6% respectively. This occurred despite the lower cetane number of n-Butanol as a result of increased mixing due to the port fuel injection of the alcohol. NOx and soot were simultaneously reduced by 21% and 80% respectively. Carbon monoxide and unburned hydrocarbons emissions were increased for the dual fuel combustion strategies due to valve overlap. Results display large emission reductions of harmful pollutants, such as NOx and soot.

An Experimental Investigation of Diesel-ignited Gasoline and Diesel-ignited Methane Dual Fuel Concepts in a Single Cylinder Research Engine

An Experimental Investigation of Diesel-ignited Gasoline and Diesel-ignited Methane Dual Fuel Concepts in a Single Cylinder Research Engine PDF Author: Umang Dwivedi
Publisher:
ISBN:
Category : Co-combustion
Languages : en
Pages : 80

Get Book Here

Book Description
Diesel-ignited gasoline and diesel-ignited methane dual fuel combustion experiments were performed in a single-cylinder research engine (SCRE), outfitted with a common-rail diesel injection system and a stand-alone engine controller. Gasoline was injected in the intake port using a port-fuel injector, whereas methane was fumigated into the intake manifold. The engine was operated at a constant speed of 1500 rev/min, a constant load of 5.2 bar IMEP, and a constant gasoline/methane energy substitution of 80%. Parameters such as diesel injection timing (SOI), diesel injection pressure, and boost pressure were varied to quantify their impact on engine performance and engineout ISNOx, ISHC, ISCO, and smoke emissions. The change in combustion process from heterogeneous combustion to HCCI like combustion was also observed.

Investigation of Gasoline Partially Premixed Combustion in a Single Cylinder Optical Diesel Engine

Investigation of Gasoline Partially Premixed Combustion in a Single Cylinder Optical Diesel Engine PDF Author: Pin Lü
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines

Advances in Compression Ignition Natural Gas – Diesel Dual Fuel Engines PDF Author: Hongsheng Guo
Publisher: Frontiers Media SA
ISBN: 2889666212
Category : Technology & Engineering
Languages : en
Pages : 125

Get Book Here

Book Description


A Computational Study of Diesel and Diesel-methane Dual Fuel Combustion in a Single-cylinder Research Engine

A Computational Study of Diesel and Diesel-methane Dual Fuel Combustion in a Single-cylinder Research Engine PDF Author: Prabhat Ranjan Jha
Publisher:
ISBN:
Category :
Languages : en
Pages : 114

Get Book Here

Book Description
Dual fuel combustion is one strategy to achieve low oxides of nitrogen and soot emissions while maintaining the fuel conversion efficiency of IC engines. However, it also suffers from high engine-out carbon monoxide and unburned hydrocarbon emissions, and the incidence of knock at high loads. The present work focused on CFD simulation of diesel-methane dual fuel combustion in a single-cylinder research engine (SCRE). For pure diesel combustion, a load sweep of 2.5 bar brake mean effective pressure (BMEP) to 7.5 bar BMEP was performed at a constant engine speed of 1500 rpm and a diesel injection pressure of 500 bar. For diesel-methane dual fuel combustion, a methane percent energy substitution sweep was performed from 30% to 90 % at 1500 rpm, 3.3 bar BMEP, 500 bar Pinj, and 355 crank angle degrees (CAD) diesel injection timing. Combustion, performance, and emissions results are presented and compared with experimental data where possible.

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL- NATURAL GAS RCCI COMBUSTION IN A HEAVY-DUTY DIESEL ENGINE

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF DUAL FUEL DIESEL- NATURAL GAS RCCI COMBUSTION IN A HEAVY-DUTY DIESEL ENGINE PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Abstract : Among the various alternative fuels, natural gas is considered as a leading candidate for heavy-duty applications due to its availability and applicability in conventional internal combustion diesel engines. Compared to their diesel counterparts natural gas fueled spark-ignited engines have a lower power density, reduced low-end torque capability, limited altitude performance, and ammonia emissions downstream of the three-way catalyst. The dual fuel diesel/natural gas engine does not suffer with the performance limitations of the spark-ignited concept due to the flexibility of switching between different fueling modes. Considerable research has already been conducted to understand the combustion behavior of dual fuel diesel/natural gas engines. As reported by most researchers, the major difficulty with dual fuel operation is the challenge of providing high levels of natural gas substitution, especially at low and medium loads. In this study extensive experimental and simulation studies were conducted to understand the combustion behavior of a heavy-duty diesel engine when operated with compressed natural gas (CNG) in a dual fuel regime. In one of the experimental studies, conducted on a 13 liter heavy-duty six cylinder diesel engine with a compression ratio of 16.7:1, it was found that at part loads high levels of CNG substitution could be achieved along with very low NOx and PM emissions by applying reactivity controlled compression ignition (RCCI) combustion. When compared to the diesel-only baseline, a 75% reduction in both NOx and PM emissions was observed at a 5 bar BMEP load point along with comparable fuel consumption values. Further experimental studies conducted on the 13 liter heavy-duty six cylinder diesel engine have shown that RCCI combustion targeting low NOx emissions becomes progressively difficult to control as the load is increased at a given speed or the speed is reduced at a given load. To overcome these challenges a number of simulation studies were conducted to quantify the in-cylinder conditions that are needed at high loads and low to medium engine speeds to effectively control low NOx RCCI combustion. A number of design parameters were analyzed in this study including exhaust gas recirculation (EGR) rate, CNG substitution, injection strategy, fuel injection pressure, fuel spray angle and compression ratio. The study revealed that lowering the compression ratio was very effective in controlling low NOx RCCI combustion. By lowering the base compression ratio by 4 points, to 12.7:1, a low NOx RCCI combustion was achieved at both 12 bar and 20 bar BMEP load points. The NOx emissions were reduced by 75% at 12 bar BMEP while fuel consumption was improved by 5.5%. For the 20 BMEP case, a 2% improvement in fuel consumption was achieved with an 87.5% reduction in NOx emissions. At both load points low PM emissions were observed with RCCI combustion. A low NOx RCCI combustion system has multiple advantages over other combustion approaches, these include; significantly lower NOx and PM emission which allows a reduction in aftertreatment cost and packaging requirements along with application of higher CNG substitution rates resulting in reduced CO2 emissions.

Fluid Mechanics and Fluid Power, Volume 4

Fluid Mechanics and Fluid Power, Volume 4 PDF Author: Krishna Mohan Singh
Publisher: Springer Nature
ISBN: 9819971772
Category :
Languages : en
Pages : 931

Get Book Here

Book Description