Author: Elizabeth Cregan
Publisher: Teacher Created Materials
ISBN: 143339104X
Category : Juvenile Nonfiction
Languages : en
Pages : 34
Book Description
Electromagnetism is the combined power of electricity and magnetism. Almost everything we do-from watching television to using a computer-is affected by electromagnets. In the 1830s, scientist Michael Faraday proved that electricity and magnetism are different ways to observe a unified force that he called electromagnetism.
Investigating Electromagnetism
Author: Elizabeth Cregan
Publisher: Teacher Created Materials
ISBN: 143339104X
Category : Juvenile Nonfiction
Languages : en
Pages : 34
Book Description
Electromagnetism is the combined power of electricity and magnetism. Almost everything we do-from watching television to using a computer-is affected by electromagnets. In the 1830s, scientist Michael Faraday proved that electricity and magnetism are different ways to observe a unified force that he called electromagnetism.
Publisher: Teacher Created Materials
ISBN: 143339104X
Category : Juvenile Nonfiction
Languages : en
Pages : 34
Book Description
Electromagnetism is the combined power of electricity and magnetism. Almost everything we do-from watching television to using a computer-is affected by electromagnets. In the 1830s, scientist Michael Faraday proved that electricity and magnetism are different ways to observe a unified force that he called electromagnetism.
Exploratory Experiments
Author: Friedrich Steinle
Publisher: University of Pittsburgh Press
ISBN: 0822981378
Category : Science
Languages : en
Pages : 468
Book Description
Translated by Alex Levine The nineteenth century was a formative period for electromagnetism and electrodynamics. Hans Christian Orsted's groundbreaking discovery of the interaction between electricity and magnetism in 1820 inspired a wave of research, led to the science of electrodynamics, and resulted in the development of electromagnetic theory. Remarkably, in response, Andre-Marie Ampere and Michael Faraday developed two incompatible, competing theories. Although their approaches and conceptual frameworks were fundamentally different, together their work launched a technological revolution—laying the foundation for our modern scientific understanding of electricity—and one of the most important debates in physics, between electrodynamic action-at-a-distance and field theories. In this foundational study, Friedrich Steinle compares the influential work of Ampere and Faraday to reveal the prominent role of exploratory experimentation in the development of science. While this exploratory phase was responsible for decisive conceptual innovations, it has yet to be examined in such great detail. Focusing on Ampere's and Faraday's research practices, reconstructed from previously unknown archival materials, including laboratory notes, diaries, letters, and interactions with instrument makers, this book considers both the historic and epistemological basis of exploratory experimentation and its importance to scientific development.
Publisher: University of Pittsburgh Press
ISBN: 0822981378
Category : Science
Languages : en
Pages : 468
Book Description
Translated by Alex Levine The nineteenth century was a formative period for electromagnetism and electrodynamics. Hans Christian Orsted's groundbreaking discovery of the interaction between electricity and magnetism in 1820 inspired a wave of research, led to the science of electrodynamics, and resulted in the development of electromagnetic theory. Remarkably, in response, Andre-Marie Ampere and Michael Faraday developed two incompatible, competing theories. Although their approaches and conceptual frameworks were fundamentally different, together their work launched a technological revolution—laying the foundation for our modern scientific understanding of electricity—and one of the most important debates in physics, between electrodynamic action-at-a-distance and field theories. In this foundational study, Friedrich Steinle compares the influential work of Ampere and Faraday to reveal the prominent role of exploratory experimentation in the development of science. While this exploratory phase was responsible for decisive conceptual innovations, it has yet to be examined in such great detail. Focusing on Ampere's and Faraday's research practices, reconstructed from previously unknown archival materials, including laboratory notes, diaries, letters, and interactions with instrument makers, this book considers both the historic and epistemological basis of exploratory experimentation and its importance to scientific development.
Electromagnetic Methods in Applied Geophysics
Author: Misac N. Nabighian
Publisher: SEG Books
ISBN: 1560800224
Category : Electromagnetic fields
Languages : en
Pages : 989
Book Description
As a slag heap, the result of strip mining, creeps closer to his house in the Ohio hills, fifteen-year-old M. C. is torn between trying to get his family away and fighting for the home they love.
Publisher: SEG Books
ISBN: 1560800224
Category : Electromagnetic fields
Languages : en
Pages : 989
Book Description
As a slag heap, the result of strip mining, creeps closer to his house in the Ohio hills, fifteen-year-old M. C. is torn between trying to get his family away and fighting for the home they love.
Advanced Electromagnetism: Foundations: Theory And Applications
Author: Terence William Barrett
Publisher: World Scientific
ISBN: 9814501085
Category : Science
Languages : en
Pages : 807
Book Description
Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.
Publisher: World Scientific
ISBN: 9814501085
Category : Science
Languages : en
Pages : 807
Book Description
Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.
Electromagnetic Investigation of Abandoned Mines in the Galena, KS, Area
Author:
Publisher:
ISBN:
Category : Ground penetrating radar
Languages : en
Pages : 28
Book Description
Publisher:
ISBN:
Category : Ground penetrating radar
Languages : en
Pages : 28
Book Description
Introduction to Electromagnetism
Author: Martin J N Sibley
Publisher: CRC Press
ISBN: 1000352374
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
This edition aims to expand on the first edition and take the reader through to the wave equation on coaxial cable and free-space by using Maxwell’s equations. The new chapters include time varying signals and fundamentals of Maxwell's equations. This book will introduce and discuss electromagnetic fields in an accessible manner. The author explains electroconductive fields and develops ideas relating to signal propagation and develops Maxwell’s equations and applies them to propagation in a planar optical waveguide. The first of the new chapters introduces the idea of a travelling wave by considering the variation of voltage along a coaxial line. This concept will be used in the second new chapter which solves Maxwell’s equations in free-space and then applies them to a planar optical waveguide in the third new chapter. As this is an area that most students find difficult, it links back to the earlier chapters to aid understanding. This book is intended for first- and second-year electrical and electronic undergraduates and can also be used for undergraduates in mechanical engineering, computing and physics. The book includes examples and homework problems. Introduces and examines electrostatic fields in an accessible manner Explains electroconductive fields Develops ideas relating to signal propagation Examines Maxwell’s equations and relates them to propagation in a planar optical waveguide Martin Sibley recently retired after 33 years of teaching at the University of Huddersfield. He has a PhD from Huddersfield Polytechnic in Preamplifier Design for Optical Receivers. He started his career in academia in 1986 having spent 3 years as a postgraduate student and then 2 years as a British Telecom-funded research fellow. His research work had a strong bias to the practical implementation of research, and he taught electromagnetism and communications at all levels since 1986. Dr. Sibley finished his academic career as a Reader in Communications, School of Computing and Engineering, University of Huddersfield. He has authored five books and published over 80 research papers.
Publisher: CRC Press
ISBN: 1000352374
Category : Technology & Engineering
Languages : en
Pages : 247
Book Description
This edition aims to expand on the first edition and take the reader through to the wave equation on coaxial cable and free-space by using Maxwell’s equations. The new chapters include time varying signals and fundamentals of Maxwell's equations. This book will introduce and discuss electromagnetic fields in an accessible manner. The author explains electroconductive fields and develops ideas relating to signal propagation and develops Maxwell’s equations and applies them to propagation in a planar optical waveguide. The first of the new chapters introduces the idea of a travelling wave by considering the variation of voltage along a coaxial line. This concept will be used in the second new chapter which solves Maxwell’s equations in free-space and then applies them to a planar optical waveguide in the third new chapter. As this is an area that most students find difficult, it links back to the earlier chapters to aid understanding. This book is intended for first- and second-year electrical and electronic undergraduates and can also be used for undergraduates in mechanical engineering, computing and physics. The book includes examples and homework problems. Introduces and examines electrostatic fields in an accessible manner Explains electroconductive fields Develops ideas relating to signal propagation Examines Maxwell’s equations and relates them to propagation in a planar optical waveguide Martin Sibley recently retired after 33 years of teaching at the University of Huddersfield. He has a PhD from Huddersfield Polytechnic in Preamplifier Design for Optical Receivers. He started his career in academia in 1986 having spent 3 years as a postgraduate student and then 2 years as a British Telecom-funded research fellow. His research work had a strong bias to the practical implementation of research, and he taught electromagnetism and communications at all levels since 1986. Dr. Sibley finished his academic career as a Reader in Communications, School of Computing and Engineering, University of Huddersfield. He has authored five books and published over 80 research papers.
Introduction to Electromagnetism
Author: M. Sibley
Publisher: Elsevier
ISBN: 0080928714
Category : Technology & Engineering
Languages : en
Pages : 205
Book Description
Electromagnetics is one of the fundamental disciplines of electronic engineering. The author explains the development of field theory in relation to common electrical circuits and components, as opposed to just circuit theory, thus giving the reader a broader perspective of electrical circuits.Essentially in two parts, this book will help students to gain an appreciation of the physical effects of electrical and magnetic fields. The first part covers the basic theory of electrostatics, electromagnetism and electroconductive fields and applies the theory to different transmission lines. It culminates in a comparison of the basic relationships that lie behind all the field systems covered. The second part covers the physical effects of dielectrics and ferrous materials on capacitors and coils. It is truly introductory with very little prior knowledge assumed. The mathematical techniques required to manipulate the theory are introduced from basics and there are numerous worked examples and problems. Self-assessment questions are given at the end of each chapter to allow the student to check their understanding of material before moving onto further chapters. This is an accessible and self-contained introduction to a topic that all physical scientists and engineers must get to grips with before developing their knowledge further.
Publisher: Elsevier
ISBN: 0080928714
Category : Technology & Engineering
Languages : en
Pages : 205
Book Description
Electromagnetics is one of the fundamental disciplines of electronic engineering. The author explains the development of field theory in relation to common electrical circuits and components, as opposed to just circuit theory, thus giving the reader a broader perspective of electrical circuits.Essentially in two parts, this book will help students to gain an appreciation of the physical effects of electrical and magnetic fields. The first part covers the basic theory of electrostatics, electromagnetism and electroconductive fields and applies the theory to different transmission lines. It culminates in a comparison of the basic relationships that lie behind all the field systems covered. The second part covers the physical effects of dielectrics and ferrous materials on capacitors and coils. It is truly introductory with very little prior knowledge assumed. The mathematical techniques required to manipulate the theory are introduced from basics and there are numerous worked examples and problems. Self-assessment questions are given at the end of each chapter to allow the student to check their understanding of material before moving onto further chapters. This is an accessible and self-contained introduction to a topic that all physical scientists and engineers must get to grips with before developing their knowledge further.
Electromagnetic Radiation
Author: Richard R. Freeman
Publisher: Oxford University Press
ISBN: 0198726503
Category : Science
Languages : en
Pages : 637
Book Description
This graduate level textbook aims to teach fundamental ideas of advanced classical electrodynamics, with an emphasis on the physics of radiation. The text describes concepts with the minimum required mathematical detail, while the accompanying side notes and end of chapter discussions provide the detailed derivations.
Publisher: Oxford University Press
ISBN: 0198726503
Category : Science
Languages : en
Pages : 637
Book Description
This graduate level textbook aims to teach fundamental ideas of advanced classical electrodynamics, with an emphasis on the physics of radiation. The text describes concepts with the minimum required mathematical detail, while the accompanying side notes and end of chapter discussions provide the detailed derivations.
Introduction to Cosmology
Author: Barbara Ryden
Publisher: Cambridge University Press
ISBN: 1107154839
Category : Science
Languages : en
Pages : 277
Book Description
A substantial update of this award-winning and highly regarded cosmology textbook, for advanced undergraduates in physics and astronomy.
Publisher: Cambridge University Press
ISBN: 1107154839
Category : Science
Languages : en
Pages : 277
Book Description
A substantial update of this award-winning and highly regarded cosmology textbook, for advanced undergraduates in physics and astronomy.
A Treatise on Electricity and Magnetism: pt. III. Magnetism. pt. IV. Electromagnetism
Author: James Clerk Maxwell
Publisher:
ISBN:
Category : Electricity
Languages : en
Pages : 504
Book Description
Publisher:
ISBN:
Category : Electricity
Languages : en
Pages : 504
Book Description