Inverse Problems and Carleman Estimates

Inverse Problems and Carleman Estimates PDF Author: Michael V. Klibanov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110745488
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems.

Inverse Problems and Carleman Estimates

Inverse Problems and Carleman Estimates PDF Author: Michael V. Klibanov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110745488
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems.

Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems

Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems PDF Author: Mourad Bellassoued
Publisher: Springer
ISBN: 4431566007
Category : Mathematics
Languages : en
Pages : 267

Get Book Here

Book Description
This book is a self-contained account of the method based on Carleman estimates for inverse problems of determining spatially varying functions of differential equations of the hyperbolic type by non-overdetermining data of solutions. The formulation is different from that of Dirichlet-to-Neumann maps and can often prove the global uniqueness and Lipschitz stability even with a single measurement. These types of inverse problems include coefficient inverse problems of determining physical parameters in inhomogeneous media that appear in many applications related to electromagnetism, elasticity, and related phenomena. Although the methodology was created in 1981 by Bukhgeim and Klibanov, its comprehensive development has been accomplished only recently. In spite of the wide applicability of the method, there are few monographs focusing on combined accounts of Carleman estimates and applications to inverse problems. The aim in this book is to fill that gap. The basic tool is Carleman estimates, the theory of which has been established within a very general framework, so that the method using Carleman estimates for inverse problems is misunderstood as being very difficult. The main purpose of the book is to provide an accessible approach to the methodology. To accomplish that goal, the authors include a direct derivation of Carleman estimates, the derivation being based essentially on elementary calculus working flexibly for various equations. Because the inverse problem depends heavily on respective equations, too general and abstract an approach may not be balanced. Thus a direct and concrete means was chosen not only because it is friendly to readers but also is much more relevant. By practical necessity, there is surely a wide range of inverse problems and the method delineated here can solve them. The intention is for readers to learn that method and then apply it to solving new inverse problems.

Carleman Estimates for Coefficient Inverse Problems and Numerical Applications

Carleman Estimates for Coefficient Inverse Problems and Numerical Applications PDF Author: Michael V. Klibanov
Publisher: Walter de Gruyter
ISBN: 3110915545
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
In this monograph, the main subject of the author's considerations is coefficient inverse problems. Arising in many areas of natural sciences and technology, such problems consist of determining the variable coefficients of a certain differential operator defined in a domain from boundary measurements of a solution or its functionals. Although the authors pay strong attention to the rigorous justification of known results, they place the primary emphasis on new concepts and developments.

Carleman Estimates for Second Order Partial Differential Operators and Applications

Carleman Estimates for Second Order Partial Differential Operators and Applications PDF Author: Xiaoyu Fu
Publisher: Springer Nature
ISBN: 3030295303
Category : Mathematics
Languages : en
Pages : 136

Get Book Here

Book Description
This book provides a brief, self-contained introduction to Carleman estimates for three typical second order partial differential equations, namely elliptic, parabolic, and hyperbolic equations, and their typical applications in control, unique continuation, and inverse problems. There are three particularly important and novel features of the book. First, only some basic calculus is needed in order to obtain the main results presented, though some elementary knowledge of functional analysis and partial differential equations will be helpful in understanding them. Second, all Carleman estimates in the book are derived from a fundamental identity for a second order partial differential operator; the only difference is the choice of weight functions. Third, only rather weak smoothness and/or integrability conditions are needed for the coefficients appearing in the equations. Carleman Estimates for Second Order Partial Differential Operators and Applications will be of interest to all researchers in the field.

Surveys on Solution Methods for Inverse Problems

Surveys on Solution Methods for Inverse Problems PDF Author: David Colton
Publisher: Springer Science & Business Media
ISBN: 3709162963
Category : Mathematics
Languages : en
Pages : 279

Get Book Here

Book Description
Inverse problems are concerned with determining causes for observed or desired effects. Problems of this type appear in many application fields both in science and in engineering. The mathematical modelling of inverse problems usually leads to ill-posed problems, i.e., problems where solutions need not exist, need not be unique or may depend discontinuously on the data. For this reason, numerical methods for solving inverse problems are especially difficult, special methods have to be developed which are known under the term "regularization methods". This volume contains twelve survey papers about solution methods for inverse and ill-posed problems and about their application to specific types of inverse problems, e.g., in scattering theory, in tomography and medical applications, in geophysics and in image processing. The papers have been written by leading experts in the field and provide an up-to-date account of solution methods for inverse problems.

Inverse Problems for Partial Differential Equations

Inverse Problems for Partial Differential Equations PDF Author: Victor Isakov
Publisher: Springer Science & Business Media
ISBN: 1489900306
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.

Inverse Problems and Related Topics

Inverse Problems and Related Topics PDF Author: Jin Cheng
Publisher: Springer Nature
ISBN: 9811515921
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
This volume contains 13 chapters, which are extended versions of the presentations at International Conference on Inverse Problems at Fudan University, Shanghai, China, October 12-14, 2018, in honor of Masahiro Yamamoto on the occasion of his 60th anniversary. The chapters are authored by world-renowned researchers and rising young talents, and are updated accounts of various aspects of the researches on inverse problems. The volume covers theories of inverse problems for partial differential equations, regularization methods, and related topics from control theory. This book addresses a wide audience of researchers and young post-docs and graduate students who are interested in mathematical sciences as well as mathematics.

Carleman Inequalities

Carleman Inequalities PDF Author: Nicolas Lerner
Publisher: Springer
ISBN: 3030159930
Category : Mathematics
Languages : en
Pages : 576

Get Book Here

Book Description
Over the past 25 years, Carleman estimates have become an essential tool in several areas related to partial differential equations such as control theory, inverse problems, or fluid mechanics. This book provides a detailed exposition of the basic techniques of Carleman Inequalities, driven by applications to various questions of unique continuation. Beginning with an elementary introduction to the topic, including examples accessible to readers without prior knowledge of advanced mathematics, the book's first five chapters contain a thorough exposition of the most classical results, such as Calderón's and Hörmander's theorems. Later chapters explore a selection of results of the last four decades around the themes of continuation for elliptic equations, with the Jerison-Kenig estimates for strong unique continuation, counterexamples to Cauchy uniqueness of Cohen and Alinhac & Baouendi, operators with partially analytic coefficients with intermediate results between Holmgren's and Hörmander's uniqueness theorems, Wolff's modification of Carleman's method, conditional pseudo-convexity, and more. With examples and special cases motivating the general theory, as well as appendices on mathematical background, this monograph provides an accessible, self-contained basic reference on the subject, including a selection of the developments of the past thirty years in unique continuation.

Inverse Source Problems

Inverse Source Problems PDF Author: Victor Isakov
Publisher: American Mathematical Soc.
ISBN: 0821815326
Category : Mathematics
Languages : en
Pages : 209

Get Book Here

Book Description
A careful exposition of a research field of current interest. This includes a brief survey of the subject and an introduction to recent developments and unsolved problems.

Control and Inverse Problems

Control and Inverse Problems PDF Author: Kaïs Ammari
Publisher: Springer Nature
ISBN: 3031356756
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
This volume presents a timely overview of control theory and inverse problems, and highlights recent advances in these active research areas. The chapters are based on talks given at the spring school "Control & Inverse Problems” held in Monastir, Tunisia in May 2022. In addition to providing a snapshot of these two areas, chapters also highlight breakthroughs on more specific topics, such as: Controllability of dynamical systems Information transfer in multiplier equations Nonparametric instrumental regression Control of chained systems The damped wave equation Control and Inverse Problems will be a valuable resource for both established researchers as well as more junior members of the community.