Author: Desmond Sheiham
Publisher: American Mathematical Soc.
ISBN: 0821833405
Category : Mathematics
Languages : en
Pages : 128
Book Description
An $n$-dimensional $\mu$-component boundary link is a codimension $2$ embedding of spheres $L=\sqcup_{\mu}S DEGREESn \subset S DEGREES{n+2}$ such that there exist $\mu$ disjoint oriented embedded $(n+1)$-manifolds which span the components of $L$. This title proceeds to compute the isomorphism class of $C_{
Invariants of Boundary Link Cobordism
Author: Desmond Sheiham
Publisher: American Mathematical Soc.
ISBN: 0821833405
Category : Mathematics
Languages : en
Pages : 128
Book Description
An $n$-dimensional $\mu$-component boundary link is a codimension $2$ embedding of spheres $L=\sqcup_{\mu}S DEGREESn \subset S DEGREES{n+2}$ such that there exist $\mu$ disjoint oriented embedded $(n+1)$-manifolds which span the components of $L$. This title proceeds to compute the isomorphism class of $C_{
Publisher: American Mathematical Soc.
ISBN: 0821833405
Category : Mathematics
Languages : en
Pages : 128
Book Description
An $n$-dimensional $\mu$-component boundary link is a codimension $2$ embedding of spheres $L=\sqcup_{\mu}S DEGREESn \subset S DEGREES{n+2}$ such that there exist $\mu$ disjoint oriented embedded $(n+1)$-manifolds which span the components of $L$. This title proceeds to compute the isomorphism class of $C_{
Algebraic Invariants of Links
Author: Jonathan Arthur Hillman
Publisher: World Scientific
ISBN: 9814407399
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters OCo twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
Publisher: World Scientific
ISBN: 9814407399
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters OCo twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
Algebraic Invariants of Links
Author: Jonathan Arthur Hillman
Publisher: World Scientific
ISBN: 9814407380
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
Publisher: World Scientific
ISBN: 9814407380
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology. This second edition introduces two new chapters twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
Algebraic Invariants Of Links
Author: Jonathan Hillman
Publisher: World Scientific
ISBN: 9814487570
Category : Mathematics
Languages : en
Pages : 321
Book Description
This book is intended as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes features of the multicomponent case not normally considered by knot theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, free coverings of homology boundary links, the fact that links are not usually boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology.
Publisher: World Scientific
ISBN: 9814487570
Category : Mathematics
Languages : en
Pages : 321
Book Description
This book is intended as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes features of the multicomponent case not normally considered by knot theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, free coverings of homology boundary links, the fact that links are not usually boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology.
Algebraic Invariants Of Links (2nd Edition)
Author: Jonathan Hillman
Publisher: World Scientific
ISBN: 9814407402
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology.This second edition introduces two new chapters — twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
Publisher: World Scientific
ISBN: 9814407402
Category : Mathematics
Languages : en
Pages : 370
Book Description
This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essential role in many applications of knot theory to other areas of topology.This second edition introduces two new chapters — twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition. Chapter 2 has been reorganized, and new material has been added to four other chapters.
Representation Type of Commutative Noetherian Rings III: Global Wildness and Tameness
Author: Lee Klingler
Publisher: American Mathematical Soc.
ISBN: 0821837389
Category : Mathematics
Languages : en
Pages : 187
Book Description
This memoir completes the series of papers beginning with [KL1,KL2], showing that, for a commutative noetherian ring $\Lambda$, either the category of $\Lambda$-modules of finite length has wild representation type or else we can describe the category of finitely generated $\Lambda$-modules, including their direct-sum relations and local-global relations. (There is a possible exception to our results, involving characteristic 2.)
Publisher: American Mathematical Soc.
ISBN: 0821837389
Category : Mathematics
Languages : en
Pages : 187
Book Description
This memoir completes the series of papers beginning with [KL1,KL2], showing that, for a commutative noetherian ring $\Lambda$, either the category of $\Lambda$-modules of finite length has wild representation type or else we can describe the category of finitely generated $\Lambda$-modules, including their direct-sum relations and local-global relations. (There is a possible exception to our results, involving characteristic 2.)
A Survey of Knot Theory
Author: Akio Kawauchi
Publisher: Birkhäuser
ISBN: 3034892276
Category : Mathematics
Languages : en
Pages : 431
Book Description
Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.
Publisher: Birkhäuser
ISBN: 3034892276
Category : Mathematics
Languages : en
Pages : 431
Book Description
Knot theory is a rapidly developing field of research with many applications, not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of this theory from its very beginnings to today's most recent research results. An indispensable book for everyone concerned with knot theory.
Noncommutative Localization in Algebra and Topology
Author: Andrew Ranicki
Publisher: Cambridge University Press
ISBN: 9780521681605
Category : Mathematics
Languages : en
Pages : 332
Book Description
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.
Publisher: Cambridge University Press
ISBN: 9780521681605
Category : Mathematics
Languages : en
Pages : 332
Book Description
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.
Rigidity Theorems for Actions of Product Groups and Countable Borel Equivalence Relations
Author: Greg Hjorth
Publisher: American Mathematical Soc.
ISBN: 0821837710
Category : Mathematics
Languages : en
Pages : 126
Book Description
Contributes to the theory of Borel equivalence relations, considered up to Borel reducibility, and measures preserving group actions considered up to orbit equivalence. This title catalogs the actions of products of the free group and obtains additional rigidity theorems and relative ergodicity results in this context.
Publisher: American Mathematical Soc.
ISBN: 0821837710
Category : Mathematics
Languages : en
Pages : 126
Book Description
Contributes to the theory of Borel equivalence relations, considered up to Borel reducibility, and measures preserving group actions considered up to orbit equivalence. This title catalogs the actions of products of the free group and obtains additional rigidity theorems and relative ergodicity results in this context.
Quasi-Ordinary Power Series and Their Zeta Functions
Author: Enrique Artal-Bartolo
Publisher: American Mathematical Soc.
ISBN: 9780821865637
Category : Functions, Zeta
Languages : en
Pages : 100
Book Description
The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function $Z_{\text{DL}}(h,T)$ of a quasi-ordinary power series $h$ of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent $Z_{\text{DL}}(h,T)=P(T)/Q(T)$ such that almost all the candidate poles given by $Q(T)$ are poles. Anyway, these candidate poles give eigenvalues of the monodromy action on the complex $R\psi_h$ of nearby cycles on $h^{-1}(0).$ In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if $h$ is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.
Publisher: American Mathematical Soc.
ISBN: 9780821865637
Category : Functions, Zeta
Languages : en
Pages : 100
Book Description
The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function $Z_{\text{DL}}(h,T)$ of a quasi-ordinary power series $h$ of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent $Z_{\text{DL}}(h,T)=P(T)/Q(T)$ such that almost all the candidate poles given by $Q(T)$ are poles. Anyway, these candidate poles give eigenvalues of the monodromy action on the complex $R\psi_h$ of nearby cycles on $h^{-1}(0).$ In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if $h$ is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.